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Abstract: We treat the problem of privacy-preserving statistics verification in clinical
research. We show that given aggregated results from statistical calculations, we can
verify their correctness efficiently, without revealing any of the private inputs used for
the calculation. Our construction is based on the primitive of Secure Multi-Party Com-
putation from Shamir’s Secret Sharing. Basically, our setting involves three parties: a
hospital, which owns the private inputs, a clinical researcher, who lawfully processes
the sensitive data to produce an aggregated statistical result, and a third party (usually
several verifiers) assigned to verify this result for reliability and transparency reasons.
Our solution guarantees that these verifiers only learn about the aggregated results
(and what can be inferred from those about the underlying private data) and nothing
more. By taking advantage of the particular scenario at hand (where certain interme-
diate results, e.g., the mean over the dataset, are available in the clear) and utilizing
secret sharing primitives, our approach turns out to be practically efficient, which we
underpin by performing several experiments on real patient data. Our results show that
the privacy-preserving verification of the most commonly used statistical operations in
clinical research presents itself as an important use case, where the concept of secure
multi-party computation becomes employable in practice.

1 Introduction

Statistical analysis of experimental data is the cornerstone in many research areas. How-

ever, human error and fraud are common threats to the integrity of the statistical results

[Fan09, Ens, Mis, RBG+00]. In addition, verification of such statistical results cannot be

applied in a straight-forward manner, since in many cases the underlying data has to re-

main confidential. To address this problem, we propose a privacy-preserving verification

procedure that allows a number of semi-honest verifiers to ascertain that statistical calcu-

lations are consistent with the confidential data that they are supposedly based on, without

learning about this underlying confidential data.

In medical research, it is common practice to give clinical researchers access to raw patient

data. This is necessary for researchers to determine the appropriate statistical analysis



method for the specific dataset in question [Fie09, pp. 822]. Patient privacy in that context

is preserved by the researchers themselves, who are bound by confidentiality agreements.

Currently, only the most prestigious medical scientific journals like Thorax [Tho] perform

statistics verification on the clinical research results, prior to their publication. This is a

labor intensive task, which has to be performed by expert statisticians. In addition, there is

a trade-off between patient privacy and thoroughness of the verification procedure. On the

one hand, if the results are only partially checked, thoroughness is sacrificed to preserve

some privacy. On the other hand, if all the results are thoroughly checked, then patient

privacy will be completely compromised. Note that current anonymization techniques

have been shown insecure, since anonymized data can be de-anonymized [Swe02]. Thus,

disclosure of (possibly anonymized) patient information should not be allowed; not even

to medical journals for verification.

Although hospitals have the confidential patient data used for the statistical analysis avail-

able in the clear, they currently do not consider the verification of the statistics. This is

because 1) hospitals wish to avoid the additional workload brought by the verification; 2)

clinical researchers are usually employed by the same hospital that provides them with the

data, where a conflict of interests might arise; 3) on-site verification does not scale, since it

is not possible to verify the results accruing from datasets of different hospitals (i.e., in the

case of a multi-center clinical research). In contrast, medical journals are interested in the

correctness of the results that they publish. Therefore, we propose that journals outsource

the verification of statistics to an independent group of servers, called the verifiers, in a

privacy-preserving manner. In this setting, the architecture that we propose is depicted in

Fig. 1. Our approach can be fully automated and does not require additional manpower to

be employed. This may well serve as a motivation for all (medical) journals to implement

this paradigm and integrate verification into their pre-publication process.

Figure 1: Privacy-preserving architecture for the verification of clinical research

Concretely, we make the following contributions:

Enhance Privacy-Awareness in the Verification of Clinical Research. Patient data is

confidential and is only to be disclosed to (trusted) experts conducting the clinical research
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with the explicit patients’ informed consent. External parties, such as medical journals,

should not receive patient confidential information, even if it has been anonymized. We

point out this important issue and propose a best practice framework (Fig. 1).

Enable Privacy-Preserving Verification of Clinical Research. As the verification of

clinical research at the hospital site is unsuitable (for the mentioned reasons, such as con-

flict of interests), we propose a mechanism that allows for the outsourcing of this veri-

fication to several semi-honest verifiers without compromising the confidentiality of the

patients’ data. Our approach is based on secure multi-party computation from Shamir’s

secret sharing and is proven secure in the semi-honest model. We base our protocols on se-

cret sharing, because of the storage and computational efficiency it provides. For Shamir’s

secret sharing to be secure, while allowing the evaluation of polynomial functions over the

shares, we need at least three computing parties. Hence, we assume several (a minimum of

three) independent, non-colluding verifiers performing the verification task. The contrac-

tual relationship between the journal and the verifiers, prevents the verifiers from cheating.

Thus, our application scenario allows us to work in the semi-honest model, where the par-

ties are assumed to follow the protocol correctly, but they are able to record the protocol

transcript, in order to infer private information.

Demonstrate the Practicality of our Approach with Real Patient Data. We develop a

set of privacy-preserving algorithms, which allows the verification of the most commonly

used statistical operations in clinical research [Md09, OS08, ZBT07]: mean, variance,

Student’s t-test, Welch’s t-test, ANOVA (F -test), simple linear regression, chi-squared

test, Fisher’s exact test, and McNemar’s test. We test this representative set of algorithms

on a real medical dataset, produced in the context of a tele-treatment medical research

[AodJH10], and show their efficiency. The dataset consists of 2370 activity feedback

messages produced for 85 patients, participating in the research. We also doubled and

tripled this dataset to show the scalability of our solution.

The execution times of our verification algorithms on this dataset range from 43.5 ms in

the fastest case (a verification of the mean age of 84 patients) to 884.6 ms in the slowest

case (a verification of simple linear regression on 6828 messages). We refer to Section

5.2 for details. Our execution times, in combination with the fact that we use real data,

substantiates the practicality of our approach.

Our solution can detect any error in the computation of the statistics, but it cannot detect

logical errors (i.e., errors in the selection of the appropriate statistical model that fits the

data best). Thus, our solution is not meant to substitute, but rather to enhance the peer-

reviewing process of medical journals. Currently, the statistics that our solution can treat,

are limited to the ones meant for normally distributed data. Dealing with statistics meant

for not normally distributed data requires highly efficient ranking of the inputs, which is a

challenging task in the secret shared domain. We leave it as an interesting future work.

The rest of the paper is organized as follows: In Section 2, we discuss related work and

frame our contribution within it. In Section 3, we give the preliminaries on the secret shar-

ing and the multi-party computation techniques that we utilize. In Section 4, we discuss

the proposed verification algorithms and the statistics to be verified. Section 5 deals with

the security and performance analysis of our algorithms and Section 6 concludes the paper.
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2 Related Work

A lot of work has been done to solve the problem of privacy-preserving statistical analy-

sis [DA01, DHC04, SCD+08, DN04, HR10, DF97, KLSR09]. In this setting, aggregated

statistical results are being computed among several parties, while the inputs for the calcu-

lation of these results remain private. In contrast to our work, their attention is focused on

secure computation of certain statistics, where each party that is involved in the computa-

tion provides its own private data. We deal with the verification of statistics, for which the

verifiers do not contribute their own private data. In that context, privacy concerns data

provided by a party, which is not involved in the computation.

Another related topic in our setting is verifiable computation [GGP10, PRV12, AIK10,

BGV11, PST13]. Verifiable computation allows a party (or set of parties) to outsource the

computation of certain functions to untrusted external parties, while maintaining verifiable

results. However, despite their lack of efficiency, all existing constructions in this area are

not applicable in our setting, as the verification is not meant to be privacy-preserving. The

security definitions of these works guarantee that the untrusted computing parties cannot

cheat in the computation (i.e., a false result will not pass the verification procedure).

Another recently emerged approach towards addressing the problem of privacy-preserving

verification is computing on authenticated data [ABC+12], which can be accomplished

using homomorphic signatures. The concept of homomorphic signatures emerged from

[JMSW02], where the first example application scenarios and definitions were given. Re-

cently, the application of homomorphic signatures was extended from treating only set

operations, to computation of functions on the signed data [BF11b, BF11a]. In [BF11b],

Boneh and Freeman propose a homomorphic signature scheme that allows linear func-

tions to be performed on the signed data, while anyone can produce a signature on the

result of the function. The scheme is weakly context hiding, meaning that it protects the

privacy of the signed data, but not hiding the fact that the function was executed. Although

the aforementioned requirement fits well in our scenario, the scheme can only treat linear

functions, which is insufficient for our purposes, as we need to compute additions and

multiplications with non-constants. Building upon their previous work [BF11b], Boneh

and Freeman [BF11a] propose a homomorphic signature scheme for polynomial func-

tions. However, the enhanced functionality of the latter scheme [BF11a] comes at the cost

of completely loosing the property of context hiding. This makes it inadequate for our

scenario, as it provides no privacy of the underlying inputs at all.

Finally, Thompson et al.’s work [THH+09] deals with computing and verifying aggregate

queries on (private) outsourced databases. They look at a setting, where a data owner

outsources his private database to third-party service providers, who can later answer ag-

gregate queries of external users or the data owner himself. Although their work is based

on similar building blocks as ours, their setting is slightly different as it focuses on the

computation of a very limited class of statistics and not on their verification. Exploiting

the fact that we only perform verification (instead of computation from scratch) allows us

to achieve very high efficiency compared to their work, while being able to deal with more

sophisticated statistics at the same time.
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The efficiency and hence practicality of Multi-Party Computation has received a lot of

attention in the last few years [BCD+09, BSMD10, BLW08]. Our solution, similarly to

the work of Bogetoft et al. [BCD+09] is based on VIFF [VD], which we used to implement

the proposed privacy-preserving verification algorithms.

3 Preliminaries

We recall Shamir’s secret sharing [Sha79] and Secure Multi-Party Computation [GRR98],

which form the main building blocks of our protocols.

3.1 Shamir’s Secret Sharing

A secret sharing scheme is a protocol, where a special party called the dealer, wishes to

share a secret value s 2 Fq (i.e., a secret value in a finite field of order q), among the set

of protocol participants. A subset of the protocol participants, called the qualified set, can

reconstruct the original secret value. Shamir’s secret sharing scheme [Sha79] consists of

three subprotocols: the share generation, secret sharing and secret reconstruction. During

the share generation, the dealer of the protocol chooses a random polynomial (over some

finite field Fq) p(x) = αtx
τ+...+α1x+s of degree τ , where τ+1 is the number of players

in the qualified set and s is the secret to be shared. Then, he evaluates the polynomial for

each player as follows: [s]i := p(i), where [s]i denotes the share of s of the ith player Pi.

For secret sharing all the shares have to be distributed to the players via secure channels.

Then, to reconstruct the secret, anyone who possesses at least τ + 1 shares can interpolate

the polynomial (e.g., by Lagrange interpolation) and reconstruct the original secret s.

3.2 Secure Multi-Party Computation based on Secret Sharing

Due to the additively homomorphic property of Shamir’s secret sharing scheme, addition

and subtraction of Shamir’s shares can be performed directly on the shares (locally by each

player), without requiring any interaction. This means that after having added/subtracted

the shares, we can reconstruct the resulting secret, and the result of the reconstruction will

be the correct result of the summation/subtraction. The same holds for addition, subtrac-

tion and multiplication with public constants on Shamir’s shares. Computing the sum of

the shares of a secret vector’s elements and then opening this result is commonly used

for the construction of our privacy-preserving verification algorithms; we will denote the

protocol for the aforementioned computation SumPub(.). The input for this protocol is

the shares of a secret shared vector of integer values, and the output is the result of the

addition of the vector elements (in the clear).

To multiply with shares, we need an interactive protocol to be executed among the play-

ers. In [GRR98], an interactive protocol for multiplication of Shamir’s shares is proposed,
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which completes its execution in one communication round. This protocol reduces the de-

gree of the underlying polynomial (which has been doubled due to the multiplication) and

restores its randomness, requiring one interactive operation for both. Our verification al-

gorithms heavily depend on the computation of inner products in the secret shared domain.

For the computation of inner products, we use a generalized version of the multiplication

protocol [GRR98], also discussed in [CHd10], that comes at the same round communi-

cation cost as the multiplication (i.e., one communication round). This protocol (called

InnerPub(.)) performs all the necessary operations in the secret shared domain and then

reconstructs the result of the inner product. This is done by first using the PRZS(.) pro-

tocol (Pseudorandom Zero-Sharing), proposed in [CDI05], to distribute the shares of a 0

to the protocol participants; those shares are later added to the share of the multiplication

result, to restore its randomness. The summation of the products and the reconstruction

of the result together, require only one communication round, in which the shares are dis-

tributed, the summation is computed and the result is reconstructed. The input for the

InnerPub(.) protocol is the shares of two secret shared vectors of integer values, and the

output is the result of computing the inner product on these vectors (in the clear).

4 Privacy-Preserving Statistics Verification

In this section, we describe our protocols for privacy-preserving verification of statistics,

while dealing with each statistical test separately. Prior to the execution of each pro-

tocol, we assume that the original data used in the calculation has been properly secret

shared among the verifiers (by the hospital), according to Shamir’s Secret Sharing scheme

[Sha79]. The main ingredients for our verification protocols, which act in the secret shared

domain, are the InnerPub(.) and SumPub(.) protocols discussed in the Preliminaries.

Our approach takes advantage of the fact that all statistical results to be verified are public.

Thus, we can let the verifiers recompute the statistics in the secret shared domain, recon-

struct the shared results, and compare with the statistics to be verified in the clear. In most

cases, we can also take advantage of intermediate results, since they are public. Note that

although our building blocks work on integers, we can also handle fixed point numbers,

by scaling them up to the desired precision and then treat them as integers.

4.1 Privacy-Preserving Mean Verification

The mean (or average) is one of the simplest statistics and is computed as

x̄ =

∑N

i=1 xi

N
, (1)

where N is the size of the sample (i.e., the number of individual subjects to be analyzed)

and xi is the variable concerning the ith subject.
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Recall that we assume that all xi (i = 1, .., N ) have been secret shared among the veri-

fiers. We compute the value x̄ in a privacy-preserving manner, by letting the verifiers run

SumPub(.). This yields the result
∑N

i=1 xi. The opening of this result does not constitute

a privacy violation, since both the mean value to be verified and the size of the sample are

public values, and the result of the summation can be computed by those two values.

By taking advantage of the fact that the number of subjects N is public, we do not perform

the division by N in the secret shared domain. Instead, we multiply the mean value (that

is to be verified) by N and compare it with the sum
∑N

i=1 xi that the verifiers computed

(for efficiency reasons). The pseudo-code is given in Algorithm 1 (Appendix A).

4.2 Privacy-Preserving Variance Verification

The variance is a measure, assessing how far the real observations are from the expected

value (i.e., the mean value discussed in the previous subsection) and is computed as

S2 =

∑N

i=1(xi − x̄)2

N − 1
. (2)

The variance only makes sense if published together with the mean value. Thus, the mean

value corresponding to the variance will also be public. Our variance verification algo-

rithm first verifies the aforementioned mean value, since it cannot be safely used, unless

verified. Next, the verifiers compute all the N subtractions locally on the shares of xi

and then interactively compute an inner product (with public result) on the results of these

subtractions. This is performed by invoking the InnerPub(.) protocol, discussed earlier.

Similarly to the mean verification protocol, we avoid the division by N − 1 in the secret

shared domain and perform a multiplication of the received variance (to be verified) by

N − 1, instead. Then, the verifiers check the consistency of the latter product, with the

inner product computed earlier and if any of them fails to find a match, the verification

fails. Details are given in Algorithm 2 (Appendix A).

4.3 Privacy-Preserving Student’s t-test Verification

The Student’s t-test is one of the most frequently used statistical tests to assess the signifi-

cance of a statistical hypothesis and is calculated as

tstudent =

∑
xi

N
−

∑
yi

N
√

∑
(xi−x̄)2

N−1 +
∑

(yi−ȳ)2

N−1

N

=
x̄− ȳ

√

S2
x+S2

y

N

, (3)

where S2
x (resp. S2

y ) is the variance of variable x (resp. y).

The Student’s t-test depends on: the variables (x and y) on which it is computed, which we

treat as the private inputs that are secret shared among the verifiers; the mean and variances
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corresponding to those variables; and the number of subjects N . In the context of clinical

research, the variables x and y can be blood pressures of N patients, after being treated

with medication X and Y respectively, and the hypothesis could concern the effectiveness

of these two medications in reducing the blood pressure. As we will use the public means

and variances for the verification of the t-value, we first need to verify them. After having

verified the public mean values and the corresponding variances, the verifiers act only in

the plaintext domain to evaluate equation (3), and check the consistency of this result with

the one received for verification. For further details see Algorithm 3 (Appendix A).

4.4 Privacy-Preserving Welch’s t-test Verification

The Welch’s t-test is a variation of the Student’s t-test, for the cases where the two groups

x, y under consideration, have different variances and sizes. The formula for calculating

Welch’s t-test is given by

twelch =
x̄− ȳ

√

S2
x

Nx
+

S2
y

Ny

, (4)

where Nx (resp. Ny) is the size of group x (resp. y).

After having verified the mean values and the corresponding variances, there is no other

calculation or verification to be performed in the secret shared domain. Having verified

the means and variances for equation (4), and given that Nx, Ny are public, the verifiers

evaluate equation (4). To complete the verification, the verifiers compare the result of the

aforementioned privacy-preserving evaluation with the t-value to be verified. The details

of the verification algorithm for Welch’s t-test are given in Algorithm 4 (Appendix A).

4.5 Privacy-Preserving F -test Verification

The F -test is one of the most commonly used tests as part of the Analysis Of Variance

(ANOVA). ANOVA is used to determine the significance of a statistical hypothesis. It is

used instead of a t-test when there are more than two groups for which the significance of

the difference among them needs to be determined. We can compute the F -value as

F = (
K
∑

i=1

Ni(x̄i − X̄)2

K − 1
)/(

K,Ni
∑

i=1,j=1

(xij − x̄i)
2

G−K
), (5)

where K is the number of groups under analysis, Ni is the size of the ith group, x̄i is the

mean of the ith group, X̄ is the mean of all group means, xij is the jth (private) value of

group i, and G is the total size (i.e., the sum of all Ni). The privacy-preserving variant

of this, works as follows: the verifiers compute and verify the means and variances of all

groups. Then, they compute in the clear the overall mean X̄ and the total size G. Given
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the aforementioned intermediate results, the verifiers evaluate equation (5) and compare

the result to the F -value to be verified. The detailed protocol is listed in Algorithm 5.

4.6 Privacy-Preserving Simple Linear Regression Verification

Simple linear regression is used to predict an outcome (or dependent) variable from one

predictor (or explanatory) variable. Specifically for simple linear regression, what needs

to be calculated is the coefficients of the straight line

y = αx+ β (6)

where the coefficient β is given as β =
∑N

i=1(xi−x̄)(yi−ȳ)
∑

N
i=1(xi−x̄)2

, and α is given as α = ȳ − βx̄.

The main ingredients for the calculation of β are the mean values of each of the two groups.

Thus, the verifiers begin with verifying the means. Observe also that the denominator of

the fraction is the sum of squared errors, which can be computed by invoking the Inner-

Pub(.) protocol with the appropriate arguments (as seen before in the verification of the

variance). The numerator of the fraction is also an inner product that the verifiers com-

pute. The result of this inner product is allowed to be revealed to the verifiers, because the

coefficient β is part of the public result of linear regression and this value can be directly

determined by multiplying β with the sum of squared errors over variable x, which is also

public (as part of the variance). Having calculated all the aforementioned, the verifiers

compute β and compare it with the received one. Next, they calculate α and proceed to

its comparison with the α received for verification. After those two comparisons, the pa-

rameters of the straight line, accruing from the simple linear regression have been verified.

Our detailed protocol for this test is listed in Algorithm 6 (Appendix A).

4.7 Privacy-Preserving Chi-Squared test Verification

The Chi-squared test [Pea00] and the two tests that follow in the next subsections, namely

Fisher’s exact test [Fis22] and McNemar’s test [McN47], are all statistical tests meant

to be used when the underlying data is categorical. This means that those tests examine

the frequency distributions of observations in a group. The frequencies observedij are

recorded in a table, called the contingency table, where the row and column totals (i.e., the

sum of each row’s elements RowTotali and column’s elements ColumnTotalj , respec-

tively) are also recorded. The most well-known chi-squared test (and the one that we treat

in this paper) is Pearson’s χ2-test [Pea00]. In particular, this test measures how well the

experimental data fits in the chi-squared distribution. The formula for Pearson’s χ2-test is

χ2 =
∑ (observedij −modelij)

2

modelij
, (7)

where modelij = (RowTotali · ColumnTotalj)/N .
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To enable privacy-preserving verification of tests meant for categorical data, a preprocess-

ing step is required. During the preprocessing phase, the raw data is encoded to its unary

representation. The number of categories, in each dimension of the clinical research, de-

fines the number of bits of each entry in the table of raw data. For example, if we were

examining the effect of 3 different medications, the number of bits of each entry in the

medication column would have been also 3. After having successfully preprocessed the

data, the hospital secret shares this data bitwise among the verifiers. We require this pre-

processing step, as it allows us to efficiently compute the frequencies in the contingency

table, by only adding up the data, or computing their inner product column-wise.

For the verification of the χ2-test, we need to verify the frequencies of the variables in a

contingency table. This is common to all statistical tests meant for categorical data and we

present this step in a separate algorithm (VrfContingency(.), Algorithm 7 in Appendix A),

for reusability purposes. The contingency table verification is performed by calculating the

inner product of each bitwise secret shared variable’s column, with the second variable’s

corresponding column. This is what the verifiers compute in the secret shared domain

and then check its consistency with the table received for verification. The total and the

marginal totals do not require calculations in the secret shared domain to get verified, since

they can be computed by adding up the (verified) frequencies. Having computed the total

and marginal totals, and verified the frequencies in the contingency table, the verifiers

evaluate equation (7) and compare the result to the value to be verified. Our detailed

algorithm for privacy-preserving χ2-test verification is given in Algorithm 8 (Appendix A).

4.8 Privacy-Preserving Fisher’s exact test Verification

Fisher’s exact test [Fis22] gives us the exact p-value determining whether the relationship

between the variables of the model is significant. This is in contrast to the χ2-test, which is

an approximation of the significance. Fisher’s exact test is used with small sample groups,

while χ2-test is more suitable for large ones. The formula for Fisher’s exact test is

p =

∏

(RowTotali! · ColumnTotalj !)
∏

observedij ! ·N !
. (8)

Fisher’s exact test is similar to the χ2-test in terms of verification. This is because all that

needs to be verified is the frequencies in the contingency table. The same preprocessing

on the original data, as the one performed for the χ2-test is required. The verifiers begin

with the verification of the frequencies in the contingency table, and the computation of

the total and the marginal totals (same as in χ2-test). Then, they evaluate equation (8) and

check the consistency of the result with the one to be verified. Our detailed algorithm for

Fisher’s exact test verification is given in Algorithm 9 (Appendix A).
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4.9 Privacy-Preserving McNemar’s test Verification

McNemar’s test [McN47], similarly to Pearson’s χ2-test, gives us an approximation of the

significance. This test, given by the following formula

χ2 =
(observed1,2 − observed2,1)

2

observed1,2 + observed2,1
, (9)

can be only applied to data recorded on a 2 × 2 contingency table. For McNemar’s test,

what we verify in the secret shared domain is the frequencies of the contingency table, as

in Fisher’s exact test and χ2-test. Hence, the verifiers proceed as described in χ2-test’s

verification. Then, they evaluate equation (9) and compare the result with the χ2-value

received for verification. Details are given in Algorithm 10 (Appendix A).

5 Security and Performance Analysis

Our setting lies in the semi-honest model, meaning that the verifiers are assumed to hon-

estly follow the instructions mandated by the protocol, but they wish to learn as much

information as possible about the private inputs of the dealer (i.e., the hospital). The ver-

ifiers are allowed to know all the public inputs given as arguments in the protocols (e.g.,

the sample group size N of the statistical operation to be verified) and all the public results

that they compute. The verifiers are not allowed to learn anything more than the aforemen-

tioned, in addition to what can be inferred by the results. Hence, we need to protect the

private inputs of the dealer and we do so by means of Shamir’s Secret Sharing. This way

we achieve information-theoretic security, as long as at least τ > n
2 verifiers are honest

and do not collude. We assume that there exists pairwise secure channels between the

verifiers.

Our performance analysis is based on a proof of concept implementation that we designed

to demonstrate the efficiency of our solution. We used real patient data for our experiments

to show the applicability of our proposal in practical cases. The aforementioned data con-

cerns patient compliance in a tele-treatment application, where the patients were carrying

a monitoring system, measuring their activity and sending them back activity advice, in

the form of feedback messages. This dataset consists of 2370 feedback messages of 85 pa-

tients that have been analyzed. For more information about the data and the tele-treatment

application we refer the reader to [AodJH10].

5.1 Security Analysis

The security requirement that we wish to satisfy is to preserve the confidentiality of the

private inputs of the dealer, while allowing a certain functionality of the verifiers, enabling

the verification of the result of a predefined function. We deal with passive, static adver-

saries corrupting any minority of the verifiers. Security is modeled using the real vs. ideal

Privacy-Preserving Verification of Clinical Research 491



paradigm [Gol04, Section 7.2]. In the real world, the protocol participants execute the

protocol interactively and there is an adversary A, having access to all the private inputs

and all the messages exchanged among the corrupted parties, as well as the public inputs

of both the corrupted and the honest parties. In the ideal world, a protocol is assumed

to be executed in the presence of a trusted party, which the protocol participants query

and get the appropriate results, based on their predefined functionality. To prove security

in the real vs. ideal framework, we show that all adversarial behavior in the real world

(where there is no trusted party) can be simulated in the ideal world. In the following, we

sketch the construction of such a simulator S , while we treat the security of each building

block (i.e., subroutine) of our construction separately and the overall security follows by

the Composition Theorem for the semi-honest model [Gol04, Theorem 7.3.3].

Observe that in all our algorithms there are only two building blocks that act in the se-

cret shared domain, the SumPub(.) and the InnerPub(.) algorithms. The rest of the

computations are performed in the clear. The SumPub(.) algorithm is executed in one

communication round. All the messages exchanged in this round are public inputs of the

parties (independent of their private inputs). Thus, the views of the adversary and the

simulator are exactly the same (i.e., indistinguishable) meaning that SumPub(.) is secure.

The InnerPub(.) algorithm starts with n invocations of the PRZS(.) function, where n
is the number of items in each vector. This function was proposed and proven secure in

[CDI05]. Next, (in the ideal world) the trusted party computes a share of the inner product

per party, and adds to this, his share of a secret shared 0 value ([0]), which he obtained

from the invocation of the PRZS(.) function. The adversary (in the real world) proceeds

similarly, but computes the resulting share for each honest party on random shares (more

precisely on shares of uniformly randomly integers), because it has no access to their pri-

vate inputs. The addition of the secret shared 0 value at this step, restores the uniformly

randomness of the shares. Thus, the ”fresh” shares do not depend on the private inputs

anymore. The aforementioned shares form the public inputs of the parties, which are

accessible by both the adversary and the simulator. The indistinguishability of the adver-

sary’s (real-world) view from the simulator’s (ideal-world) view follows from the fact that

the adversary and simulator have identical views of the public inputs and indistinguishable

views of the private inputs. The latter holds, because Shamir’s shares are perfectly indis-

tinguishable from random integers. Hence, the InnerPub(.) algorithm is proven secure.

Having proven secure the SumPub(.) and the InnerPub(.) algorithms, by the composi-

tion theorem, the overall security of our protocols is guaranteed.

5.2 Performance Analysis

Our performance analysis presents the execution times of our verification algorithms. The

implementation of these algorithms is based on VIFF [VD]. The experiments for timing

our verification algorithms were conducted on an Intel(R) Core(TM) i3-2350M processor,

at 2.3 GHz, with 4.00 GB RAM and Windows 7 64-bit operating system. We have con-

ducted all tests on localhost, with 3 verifiers, and the network latency has not been taken

into account. In VIFF, the prime p, determining the size of the field Zp, is selected to be
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greater than (2l+1+2l+k+1), where l is the maximum bit length of the inputs, and k is the

statistical security parameter. These values are by default set to l = 32 and k = 30. For

reasons of uniformity of the execution time results we use these default values for all our

experiments. To handle fixed point numbers occurring in our setting, we scale them up to

a precision of five decimal digits and then treat them as integers. The selection of l = 32
bits is large enough to handle this scaling both for our inputs and for our outputs.

In addition to the computational cost, determined by the number of variables, the number

of entries per variable and the size p (of ∼ 64 bits) of the field Zp, the communication cost

also plays an important role in the overall performance. Recall that in our algorithms, the

communication cost is brought only by the invocations of SumPub(.) and InnerPub(.),

which are the only building blocks acting in the secret shared domain. The communication

cost of each such invocation remains constant in all our algorithms, as for both subroutines

only one aggregated value is sent, the size of which is upper bounded by the size of the field

Zp, which is also constant and equal to 8 bytes (corresponding to the 64 bits of the prime p)

per invocation, per verifier. Hence, our communication cost solely depends on the number

of interactive rounds (i.e., the number of SumPub(.) and InnerPub(.) invocations). In

the following, we deal with the round complexity of each statistic separately.

Mean and Variance: For the verification of the mean and variance we calculated those

two statistics on the ages of 84 patients. One patient (out of the originally 85 patients)

was excluded from the specific tests, because his age value was missing. The variable that

influences the runtime is the number of patients N = 84 and the number of communication

rounds is 1 and 2, for the mean and variance, respectively. The performance results of the

Mean and Variance verification algorithms are presented in Table 1. These two tests do

not scale perfectly linearly, due to their very small execution times.

Mean Variance

84 patients 43.5 ms 43.7 ms

168 patients 45.1 ms 49.7 ms

252 patients 45.8 ms 49.9 ms

Table 1: Performance of Mean and Variance Verification

ANOVA, Simple Linear Regression, Student’s and Welch’s t-tests: We conducted

Welch’s t-test on the time elapsed between receiving a message and reading it, versus

patient compliance to that message. We have split our dataset of 2370 messages based on

whether the patient complied to the message (N1 = 1404) or not (N2 = 966). Welch’s

t-test in this case, identifies whether there is a significant relationship between the com-

pliance to a feedback message and the time elapsed between receiving it and reading it.

It completes its execution in 4 rounds. For ANOVA we used the same time variable, ver-

sus the diagnosis (categorical variable taking 4 distinct diagnosis values) for the patient

reading the feedback message in question. The dataset of 2370 messages is split based on

the 4 different diagnoses to N1 = 953, N2 = 524, N3 = 365, N4 = 528 and requires 8

communication rounds. For simple linear regression, we examine the significance of the

relationship between the aforementioned time variable (dependent variable), and the age

of each patient (independent variable). We have excluded from our dataset the messages
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concerning a patient for whom the age value was missing, and the size of our sample is

N = 2276, while the number of required communication rounds is 4.

Our dataset does not contain two equal sized groups on which we can perform Student’s

t-test. Thus, we have excluded these runtimes from our performance results. Given the

similarity of these two tests, their corresponding runtimes for the verification algorithms

are also expected to be similar. Our performance results for Welch’s t-test and F -test are

summarized in Table 2; for regression they are given in Table 3. These tests scale linearly

in the number of inputs (see Tables 2 and 3), as we have shown by doubling and tripling

our dataset, and executing the algorithms on the augmented datasets.

Welch’s t-test F -test

2370 msgs 165.5 ms 171.6 ms

4740 msgs 291.9 ms 315.1 ms

7110 msgs 404.1 ms 479.0 ms

Table 2: Performance of Welch’s t-test
and F -test Verification

Regression

2276 msgs 304.3 ms

4552 msgs 586.4 ms

6828 msgs 884.6 ms

Table 3: Performance of Simple
Linear Regression Verification

Chi-Squared test, Fisher’s exact test and McNemar’s test: We performed χ2-test on

the compliance to each of the 2370 feedback messages versus the diagnosis, to determine

whether the data follows the χ2 distribution. For Fisher’s exact test, we split our dataset

based on the gender of the 85 patients versus the diagnosis. We also performed and verified

McNemar’s test on the compliance to each of the 2370 feedback messages versus the feed-

back type (i.e., encouraging or discouraging message). Both the χ2-test and Fisher’s exact

test verification require 8 communication rounds each, while McNemar’s test requires 4

rounds. The performance results for χ2-test and McNemar’s test verification algorithms

are given in Table 4, while the corresponding results for Fisher’s test are presented in Ta-

ble 5. As expected from our experimental setup, the execution time of the verification

algorithms scales linearly in the number of input data.

Chi-Squared McNemar’s

2370 msgs 207.3 ms 138.8 ms

4740 msgs 397.7 ms 238.8 ms

7110 msgs 594.4 ms 352.7 ms

Table 4: Performance of Chi-Squared
and McNemar’s test Verification

Fisher’s test

85 patients 53.3 ms

170 patients 57.7 ms

255 patients 70.3 ms

Table 5: Performance of Fisher’s
exact test Verification

6 Conclusion

We deal with privacy-preserving verification of statistics in clinical research, where the

prover does not wish to disclose information about the inputs to the verifier. This is recip-

rocal to scenarios that previous works address, where the verifier does not wish to disclose
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information about the inputs to the prover. We demonstrate that in the clinical research sce-

nario under consideration, privacy-preserving verification of statistics can be performed so

efficiently, that it can be applied in practice.
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A Verification Algorithms

Algorithm 1 v ← VrfMean([x], N, x̄)

1: Input: [x] = secret shared vector x, N = size of sample group, x̄ = calculated mean

value to be verified

2: Output: v = 0 or 1; 0 → unsuccessful verification, 1 → successful verification

3: for all Pj do

4: if (N · x̄) v= SumPub([x]) then

5: return 0

6: return 1
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Algorithm 2 v ← VrfVariance([x], x̄, N, S2)

1: Input: [x] = secret shared vector x, x̄ = mean value of sample group x, N = size of

sample group, S2 = calculated variance to be verified

2: Output: v = 0 or 1; 0 → unsuccessful verification, 1 → successful verification

3: if VrfMean([x], N, x̄) == 0 then

4: return 0

5: for all Pj do

6: if ((N − 1) · S2) v= InnerPub(([x]− x̄), ([x]− x̄)) then

7: return 0

8: return 1

Algorithm 3 v ← VrfS-T-test([x], [y], x̄, ȳ, N, S2
x, S

2
y , t)

1: Input: [x] = secret shared vector x, [y] = secret shared vector y, x̄ = mean value of

sample group x, ȳ = mean value of sample group y, N = size of sample group, S2
x

= variance of sample group x, S2
y = variance of sample group y, t = t-value to be

verified

2: Output: v = 0 or 1; 0 → unsuccessful verification, 1 → successful verification

3: if VrfVariance([x], x̄, N, S2
x) == 0 or VrfVariance([y], ȳ, N, S2

y) == 0 then

4: return 0

5: for all Pj do

6: if (x̄− ȳ)/(

√

S2
x+S2

y

N
) v= t then

7: return 0

8: return 1

Algorithm 4 v ← VrfW-T-test([x], [y], x̄, ȳ, Nx, Ny, S
2
x, S

2
y , t)

1: Input: [x] = secret shared vector x, [y] = secret shared vector y, x̄ = mean value of

sample group x, ȳ = mean value of sample group y, Nx = size of sample group x, Ny

= size of sample group y, S2
x = variance of sample group x, S2

y = variance of sample

group y, t = t-value to be verified

2: Output: v = 0 or 1; 0 → unsuccessful verification, 1 → successful verification

3: if VrfVariance([x], x̄, Nx, S
2
x) == 0 or VrfVariance([y], ȳ, Ny, S

2
y) == 0 then

4: return 0

5: for all Pj do

6: if (x̄− ȳ)/(
√

S2
x

Nx
+

S2
y

Ny
) v= t then

7: return 0

8: return 1
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Algorithm 5 v ← VrfF-test(K, [x][K], x̄[K], N [K], S2[K], F )

1: Input: K = number of groups, [x] = table of K secret shared vectors x[K], x̄[K] =

mean values of K sample groups x, N [K] = K sizes of the sample groups, S2[K] =

variances of the K sample groups, F = F -value to be verified

2: Output: v = 0 or 1; 0 → unsuccessful verification, 1 → successful verification

3: for k = 1, ...,K do

4: if VrfVariance([x]k, x̄k, Nk, S
2
k) == 0 then

5: return 0

6: for all Pj do

7: if (
∑K

k=1
Nk(x̄k−

∑K
k=1 x̄k

K
)2

K−1 )/(
∑K

k=1
([x]k−x̄k)

2

∑
K
k=1 Nk−K

) v= F then

8: return 0

9: return 1

Algorithm 6 v ← VrfSimpleLinearRegression([x], [y], x̄, ȳ, α, β,N)

1: Input: [x] = secret shared vector x, [y] = secret shared vector y, x̄ = mean value

of sample group x, ȳ = mean value of sample group y, α = α-value to be verified,

β = β-value to be verified, N = size of sample group

2: Output: v = 0 or 1; 0 → unsuccessful verification, 1 → successful verification

3: if VrfMean([x], N, x̄) == 0 or VrfMean([y], N, ȳ) == 0 then

4: return 0

5: for all Pj do

6: if
InnerPub(([x]−x̄),([y]−ȳ))

InnerPub(([x]−x̄),([x]−x̄))
v= β or (ȳ − β · x̄) v= α then

7: return 0

8: return 1

Algorithm 7 v ← VrfContingency([x[C1]], [y[C2]], C1, C2, F [C1, C2])

1: Input: [x] = C1 · N secret shared bits of the unary representation of vector x, [y]

= C1 · N secret shared bits of the unary representation of vector y, C1 = number

of possible values under ”cause” of the experiment, C2 = number of possible values

under ”effect” of the experiment, F [C1, C2] = table of size C1 · C2 containing the

frequencies observed (i.e., inner part of the contingency table)

2: Output: v = 0 or 1; 0 → unsuccessful verification, 1 → successful verification

3: for k = 1, ..., C1 do

4: for l = 1, ..., C2 do

5: V F [k, l] ← InnerPub([xk], [yl])
6: for all Pj do

7: if V F [k, l] v= F [k, l] then

8: return 0

9: return 1
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Algorithm 8 v ← VrfChi-squaredTest([x[C1]], [y[C2]], C1, C2, F [C1, C2], χ2)

1: Input: [x] (resp. [y]) = bitwise secret shared vector x (resp. y), where each entry has

C1 (resp. C2) bits, C1 = number of possible values under ”cause” of the experiment,

C2 = number of possible values under ”effect” of the experiment, F [C1, C2] = table

of size C1 · C2 containing the frequencies observed, χ2 = χ2-value to be verified

2: Output: v = 0 or 1; 0 → unsuccessful verification, 1 → successful verification

3: if VrfContingency([x[C1]], [y[C2]], C1, C2, F [C1, C2]) == 0 then

4: return 0

5: for all Pj do

6: modelk,l ← (
∑C2,C1

l=1,k=1 Fk,l ·
∑C1,C2

k=1,l=1 Fk,l)/(
∑C1

k=1 RowTotalk)

7: if
∑C1,C2

k=1,l=1
(Fk,l−modelk,l)

2

modelk,l
v= χ2 then

8: return 0

9: return 1

Algorithm 9 v ← VrfFisher’sTest([x[C1]], [y[C2]], C1, C2, F [C1, C2], p)

1: Input: [x] (resp. [y]) = bitwise secret shared vector x (resp. y), where each entry has

C1 (resp. C2) bits, C1 = number of possible values under ”cause” of the experiment,

C2 = number of possible values under ”effect” of the experiment, F [C1, C2] = table

of size C1 · C2 containing the frequencies observed, p = p-value to be verified

2: Output: v = 0 or 1; 0 → unsuccessful verification, 1 → successful verification

3: if VrfContingency([x[C1]], [y[C2]], C1, C2, F [C1, C2]) == 0 then

4: return 0

5: for all Pj do

6: V pUpper ←
∏C1

k=1

∑C2,C1
l=1,k=1 Fk,l! ·

∏C2
l=1

∑C1,C2
k=1,l=1 Fk,l! #numerator of the p fraction

7: V pLower ←
∏C1,C2

k=1,l=1 Fk,l! ·
∑C1

k=1

∑C2,C1
l=1,k=1 Fk,l! #denominator of the p fraction

8: if V pUpper
V pLower

v= p then

9: return 0

10: return 1

Algorithm 10 v ← VrfMcNemar’sTest([x[2]], [y[2]], F [2, 2], χ2)

1: Input: [x] (resp. [y]) = bitwise secret shared vector x (resp. y), where each entry has

2 bits, F [2, 2] = 2× 2 table of frequencies, χ2 = χ2-value to be verified

2: Output: v = 0 or 1; 0 → unsuccessful verification, 1 → successful verification

3: if VrfContingency([x[2]], [y[2]], 2, 2, F [2, 2]) == 0 then

4: return 0

5: for all Pj do

6: if
(F1,2−F2,1)

2

F1,2+F2,1
v= χ2 then

7: return 0

8: return 1
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