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Smart contracts are believed to be 
the next step in inter-party automation; 
traditional trusted third parties are 
to be replaced by small pieces of 
code running on a distributed system. 
However, at the end of the day,  
these smart contracts controlling 
high-value assets are pieces of code 
written by fallible humans.  
And because of the special nature of 
smart contracts, mistakes or bugs  
can have a significant financial 
impact, as illustrated by a number of 
recent high-profile incidents. In this 
white paper we explore this problem 
further and describe a number of 
strategies and approaches for the 
creation of secure and robust smart 
contracts, some of which can be 
applied right now, while others require 
additional research & development to 
be applicable.
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1. INTRODUCTION

BITCOIN1 STARTED AS A GRASS-ROOTS PROJECT AND HAS SHOWN HOW ITS 
UNDERLYING BLOCKCHAIN TECHNOLOGY CAN BE USED TO BUILD A DISTRIBUTED, 
TRUSTLESS2 VALUE-EXCHANGE SYSTEM ON THE GLOBAL INTERNET. The Ethereum 
project3, seen by some as the second-generation blockchain, built on Bitcoin’s ideas to 
produce a strongly decentralized platform that allows for programmable transfer of 
ownership of value, including virtual assets and representations of real-world assets.

Through so called smart contracts, users can precisely codify their agreements and 
trust relations, which after deployment will automatically be executed by the (Ethereum) 
platform. The vision for these smart contracts is that they will facilitate economic 
activity by effectively providing services that are traditionally offered by (trusted) third 
parties and intermediaries (e.g., banks, notaries, courts).

However, that what makes smart contracts such a powerful concept is also its Achilles’ 
heel. After deployment on the blockchain platform, the smart contract itself cannot be 
modified or manipulated anymore, which is what gives all participants the confidence 
to depend on it. But this very same property also makes any mistake in the code of the 
smart contract very hard (or near impossible) to correct.

The blockchain world is thus moving towards a future in which we yield the control of 
high value assets to smart contracts that:
–  are unchangeable, autonomous and unstoppable,
–  are publicly visible and analyzable,
–  run in a public, hostile environment,4 
–  are written by fallible humans.

A number of recent incidents concerning bugs in smart contracts leading to multi-
million losses (see Section 3) have shown this is a recipe for disaster and illustrate that 
authoring smart contracts requires a different set of development practices than the 
happy-go-lucky style that is common in current mainstream software development [1]. 

1 https://bitcoin.org
2 As in, there is no need to trust another participant to do the right thing, as long as the majority is honest.
3 https://ethereum.org
4 For consortium or permissioned blockchains this is not necessarily the case, see section 2.1.

That what makes smart contracts such 
a powerful concept is also its Achilles’ 
heel.
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In this paper we will first dive into the world of smart contracts in Section 2 and then 
continue in Section 3 to explore the ways smart contracts can fail. This is followed by  
a discussion of a number of strategies and approaches for the creation of robust and 
secure smart contracts. Do note that while this paper appears to focus on the 
Ethereum platform, this is mostly because the prevalence and momentum of the 
platform makes illustrative failure cases and (partial) solutions more abundant than  
for other platforms.
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2. BLOCKCHAIN AND SMART CONTRACTS

FROM A TECHNICAL PERSPECTIVE, A BLOCKCHAIN PLATFORM CONSISTS OF A PEER-
TO-PEER NETWORK OF A NUMBER OF COMPUTER NODES, OWNED BY MUTUALLY 
DISTRUSTING DISTINCT ENTITIES, COLLABORATING TO REACH CONSENSUS ON THE 
ORDER OF CHANGES TO THEIR EVER-CHANGING SHARED REALITY (I.E., A DATABASE). 
The changes to the shared reality come in the form of transactions, for each of which 
the participating nodes need to decide and agree whether they conform to the rules 
agreed upon. In Bitcoin, for example, this shared reality is a ledger of who owns what 
bitcoin and in Ethereum it is the state of a replicated, though slow, “world computer” 
that is programmable using so called smart contracts. On top of all this, the user-facing 
applications are (to be) built. The above concise description of blockchain technology 
nicely maps to a 4-layer model, as illustrated in Figure 1.

FIGURE 1: A FOUR-LAYER MODEL FOR BLOCKCHAIN TECHNOLOGY
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3. CONSENSUS IN PUBLIC AND IN  
 CONSORTIA

ON THE PUBLIC BITCOIN AND ETHEREUM PLATFORMS, FITTING WITH THEIR 
LIBERTARIAN ROOTS, ANYONE CAN JOIN AND PARTICIPATE IN THE CONSENSUS 
PROCESS, AND NO PERMISSION FROM SOME CENTRAL AUTHORITY IS NEEDED; ONE 
ONLY NEEDS TO BE WILLING DO SOME (COMPUTATIONAL) WORK IN THE FORM OF 
FINDING A SOLUTION TO A CRYPTOGRAPHIC PUZZLE.5 Participants are also 
compensated for this work with the platform’s internal currency, as long as their 
contribution to the consensus process abides to the consensus rules.

Later, driven by the need for more (regulatory) control, privacy, and capacity, so called 
permissioned or consortium blockchains started to be developed. In such consortium 
blockchains, all parties are typically (legally) identifiable and permissions on who can 
participate are strictly, if not centrally, controlled. Prime examples of such consortium 
blockchain initiatives are the Hyperledger Fabric project6 and R3’s Corda project7.

3.1 SMART CONTRACTS

MUCH OF THE EXCITEMENT (AND HYPE) SURROUNDING BLOCKCHAIN TECHNOLOGY 
REVOLVES AROUND THE PROMISE OF SMART CONTRACTS. These (relatively) small 
pieces of software code are evaluated by all8 the nodes of a blockchain platform when 
triggered through incoming transactions. The rules and algorithms in the smart 
contract can in this way govern the ownership of assets (e.g., digital currency) and other 
“state” as described in the code. Assuming an honest majority of nodes, the smart 
contracts will always execute as specified, which is what makes them suitable to take 
on the role of an efficient, impartial intermediary; all stakeholders can depend on the 
truthful execution of the code, without any one party having the ability to interfere. 
Applications range from basic multi-signature wallets and escrow services to full-blown 
“Distributed Autonomous Organizations” (DAOs), where the latter are virtual companies 
that are fully governed by code and do not have identifiable owners.

From the start, Bitcoin has had a form of programmability with “Scripts” [2] that  
allow one to express the rules of how and when funds could be “unlocked”, but it is 
deliberately limited and it was not the main focus of the project. In contrast, for 
Ethereum programmability was the main selling point when it was introduced [3], [4] as 
a distributed, blockchain-based platform with a built-in Turing-complete9 programming 
language to create smart contracts with.

5 This process called “proof-of-work” is currently used by most public permissionless blockchains, which basically boils down to trying many possible 
solutions until you find one that fits the requirements. Due to the high (energy) cost of this consensus approach, many are looking for alternatives, of 
which proof-of-stake is most promiment. In proof of stake, your “voting right” in the consensus mechanism does not depend on your computational 
power, but the amount of currency you have (and put “at stake”).

6 https://www.hyperledger.org/projects/fabric
7 https://www.corda.net/
8 Actually not necessarily all nodes, this depends on the blockchain platform; in particular the consortium blockchains include controls to decide which 

code is run and seen by which participant for confidentiality and performance reasons.
9 Semi-Turing complete actually; all execution of smart contract code is bounded as the caller of the code has to supply “gas”: compensation for the 

execution payed in the platform currency (ether).
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Although both the term and the concept of a smart contract were already introduced  
in 1996 by Nick Szabo [5], the birth of the Ethereum platform made the term more 
widespread. Consequently, Ethereum is currently the most prevalent smart contract 
platform in terms of visibility, momentum, and development tooling. Smart contracts  
on Ethereum are submitted to the platform in the form of low-level binary bytecode  
that is to be executed on a special purpose virtual machine (EVM) by all the nodes.  
The low-level bytecode is typically produced through compilation from a high-level, 
human readable language, of which Solidity10 is the most prevalent.11 

Also in the world of permissioned (consortium) blockchains smart contracts play an 
important role. Some use Ethereum’s EVM and development ecosystem (e.g., Monax12 
and Quorum13), while others use traditional general purpose programming languages. 
For example Hyperledger Fabric uses the Go programming language to program smart 
contracts in (which they call “ChainCode”) and R3’s Corda uses Java. At the end of the 
day though, smart contracts are still code written by fallible humans, which means 
mistakes are likely to be made.

3.2 HOW SMART CONTRACTS CAN FAIL

A SMART CONTRACT, LIKE ANY COMPUTER CODE, ALWAYS SIMPLY EXECUTES AS 
SPECIFIED, AND FOR THE PLATFORM ITSELF THERE IS NO RIGHT OR WRONG. One 
talks of mistakes or bugs in code when there is a (strong) mismatch between the 
underlying intention, assumption, or expectation and the actual code that is executed. 
As mentioned in the introduction, such mismatches have in the past already resulted in 
a number of multi-million dollar incidents.

One talks of mistakes or bugs in code 
when there is a (strong) mismatch 
between the underlying intention, 
assumption, or expectation and the 
actual code that is executed.

10 https://solidity.readthedocs.io
11 One of the earliest languages for the EVM was “Serpent”, a python inspired language that since has been deprecated because of the many (security 

related) problems in its compiler. [6]
12 https://monax.io/
13 https://github.com/jpmorganchase/quorum
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3.3 HIGH-PROFILE SMART CONTRACT  
  FAILURES

THE MOST FAMOUS INCIDENT TO DATE WAS IN THE SUMMER OF 2016, WHEN “THE 
DAO”, A SMART CONTRACT GOVERNED VIRTUAL COMPANY RUNNING ON THE 
ETHEREUM PLATFORM, IMPLODED AFTER AN EXPLOITABLE BUG HAD BEEN FOUND IN 
THE SMART CONTRACT CODE. The DAO was an example of a Distributed Autonomous 
Organization, and in essence, a virtual investment fund, that allowed participants to 
buy a stake, which would give them proportional voting rights on which future proposals 
should be funded. To the surprise –and perhaps even dismay of the initiators– The DAO 
managed to collect nearly $150M worth (at the time) of ether. However, shortly after 
the crowd-funding period, an attacker managed to gain control over a significant 
portion of the value in the fund (nearly $60M), due to a bug in the smart contract  
code [7]. The resolution came in the form of a controversial, coordinated platform 
intervention that reverted the theft and dismantled the The DAO. Some opposed this 
intervention, feeling it violated the “code-is-law” principle [8], and pushed for a fork of 
the platform (see [9] for a back story).

The attacker managed to gain control 
over nearly $60M in the fund due to a 
bug in the smart contract code.

ATTACK

BUG

CONTROL

$60M 

MISTAKE
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Approximately a year later, another smart contract bug resulted in a multi-million dollar 
theft. The Parity multi-sig wallet allows one to spread control of funds over multiple 
people, for example by only allowing the transfer of funds when 2 out of 3 pre-defined 
signatures are presented. Unfortunately, there turned out to be a small mistake in the 
initialization code, allowing an attacker to trivially gain control of the wallet and divert 
the funds inside elsewhere. As a number of high-profile crowd-funded projects used 
this wallet to manage their funds, this simple bug resulted in the theft of approximately 
$30M [10].

Interestingly, only a few months later there was another multi-million dollar incident 
with the updated version of the very same Parity multi-sig wallet. This time, $160M 
worth of ether was accidentally frozen because a bug in a so-called library contract 
allowed the library contract be triggered to disable and remove itself, locking up the 
funds of all 500+ wallets that depend on this code [11]. As this issue appears to be 
less contentious than The DAO incident, it is not unlikely there will be some sort of 
platform intervention to unlock these funds.

3.4 MISTAKES IN SMART CONTRACTS

WHEN WRITING SMART CONTRACTS –AS IS THE CASE FOR ANY OTHER PIECE OF 
SOFTWARE– THERE IS OF COURSE PLENTY OF ROOM FOR STRAIGHT-UP LOGIC 
ERRORS, IN PARTICULAR IN MORE COMPLEX SMART CONTRACTS. However, smart 
contract platforms themselves have a number of specific subtleties and pitfalls that 
can lead to (potentially exploitable) mistakes (see [12]–[14] for an overview).

On the Ethereum platform for example, a smart contract transferring ether to an 
account can trigger the execution of code in case that particular account is governed 
by another smart contract, which can sometimes lead to surprising effects. To 
illustrate, the bug in the infamous “The DAO” smart contract was a subtle reentrancy 
issue; neither the authors of the smart contract nor the reviewers had realized that a 
seemingly benign transfer of ether would allow an attacker to re-invoke the same piece 
of code in the smart contract, manipulating its internal state more than the intended 
one time [7]. Similarly, a smart contract author can easily be surprised by the effects of 
code executed as a result of a transfer of ether if the various forms of exceptions 
supported by the EVM are not properly handled. Such mishandling of exceptions is 
what caused the demise of the (not so serious) “King of the Ether Throne” smart 
contract.14 

Smart contract platforms themselves 
have a number of specific subtleties 
and pitfalls that can lead to potentially 
exploitable mistakes.

14 See https://www.kingoftheether.com/postmortem.html for a post-mortem.
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In addition, one needs to consider the environment the smart contracts “live” in.  
Even though the invocations of a smart contract are executed by all participating nodes 
in a blockchain network to make sure it is executed correctly, the node (i.e., miner)  
that produces the block can sometimes still have some subtle influence on the 
outcome of a smart contract. In smart contracts with transaction-ordering dependence 
for example, miners can re-order transactions in a block for their advantage, and in 
smart contracts with timestamp dependence miners have some flexibility in choosing 
the timestamp for the block, which for example can be used to influence a timestamp-
based lottery [13].

Finally, the problems smart contracts try to solve often include some aspects of 
“fairness” and game theory, which is something that is still hard to model and put  
into code. According to some, the aforementioned and now defunct “The DAO” smart 
contract, also contained a number of game-theoretic flaws besides the fatal flaw  
that led to its demise [15]. In addition, one needs to remember that by default, all 
information the smart contract bases its decisions on is public. Keeping certain pieces 
of information private will typically require the use of authenticated data-sources 
(oracles) or advanced (zero-knowledge) cryptography [16], which is non-trivial in its  
own right.

In general, it appears that the Ethereum platform itself, and in particular its Solidity 
language make writing smart contracts error prone (see also the next section). Atzei et 
al. [14] provide an excellent systematic survey of attacks on Ethereum smart contracts.

3.5 SEMANTICS IN SMART CONTRACTS

BESIDES THE EXECUTION, ANOTHER POTENTIAL SOURCE OF SURPRISE OR CONFUSION 
IS THE MEANING OR SEMANTICS OF THE CONCEPTS THAT A SMART CONTRACT 
REFERS TO. Rigorous, well-defined semantics are crucial to be able to make a mapping 
between real-world and digital concepts. The importance of semantics is well illustrated 
by the Mars Climate Orbiter incident in which the spacecraft was lost on entry to the 
Martian atmosphere because one of the software components used imperial rather 
than metric units [17]. While [13] recognized that a “semantic gap” frequently exists 
and is partially responsible for the failure of smart contracts to execute as expected, 
their focus is on the semantics of the underlying infrastructure rather than the 
semantics embedded in the smart contract. Even though there have not yet been 
(recorded) incidents of smart contract issues caused by semantic confusion, this is 
bound to happen as smart contracts become more complex and interconnected. There 
is a wide variety of standards, vocabularies and ontologies available for different 
domains to formalize the relations and meaning of concepts used (cf. for example 
schema.org) but so far no research has been undertaken on the integration of such 
semantic vocabularies into smart contracts.
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4. TOWARDS ROBUST AND SECURE  
 SMART CONTRACTS

THE ABOVE DISCUSSION ILLUSTRATES THAT BECAUSE OF THEIR PARTICULAR  
NATURE AND THE ENVIRONMENT THEY “LIVE” IN, SMART CONTRACTS REQUIRE A 
DEVELOPMENT PROCESS THAT IS DIFFERENT FROM TRADITIONAL SOFTWARE 
DEVELOPMENT. It is more akin to the development of safety critical software or the 
development of hardware (silicon). In fact, the guidelines, tooling and wisdom from 
these fields already provide a solid basis to draw inspiration from for the development 
of secure and robust smart contracts.

In this section we highlight a number of strategies and approaches for the creation of 
secure and robust smart contracts that can be applied right now as well as approaches 
that require additional research and development.

4.1 BEST PRACTICES

WRITING SECURE SOFTWARE IS NOT A ‘NEW THING’ AND THERE ARE ALREADY 
GENERAL SOFTWARE DEVELOPMENT BEST PRACTICES THAT ARE VERY APPLICABLE 
TO SMART CONTRACT CREATION. This includes among others, risk analysis, collection 
of security requirements, identification of abuse cases, and a proper definition of the 
attacker model. However, due to their nature and the (hostile) environment they live in, 
smart contracts require extra, if not special, attention. In addition, there are a number 
of platform-specific pitfalls to avoid.

After the high-profile security incidents, the Ethereum community started focusing more 
on the security of smart contracts. A number of blog posts have been dedicated to the 
subject [18]–[20] and various security guidelines have been published, both inside the 
official Solidity documentation [21] and elsewhere [22]. Some guidelines are very 
platform (Ethereum) specific, while others are more general. We will highlight a number 
of them in this section and the following.

A first general step is simply keeping smart contracts small and simple. In addition to a 
reduced attack surface, having a smaller amount of code makes it easier to reason 
about and scan for potential vulnerabilities. This comes down to consciously deciding 
what aspects of the business logic should be put in the smart contract and what parts 
can safely be pushed towards the ‘edges’ of the platform. Only those aspects that 
relate to security and trust (or the lack thereof) should be incorporated in the smart 
contract.15 Of course, as discussed elsewhere [22], there are subtle trade-offs to 
consider in terms of simplicity, reusability and being able to reason about code.

15 Some parallels can be drawn to so called applets running on smart cards. Like smart contracts, smart cards have limited computing power (low 
power) and they provide security services. And similarly, mistakes in smart card applets can have a high financial impact and are non-trivial to patch.
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General software development best practices that are also very suitable for smart 
contracts include defensive programming, fuzzing, and use of automated tests and  
test frameworks. For example, Truffle16 is a development and testing framework for 
Ethereum (Solidity) smart contracts.

Furthermore, as with traditional software, code reviews [23] and code audits17 can 
prove very valuable in preventing bad smart contract code from going into production. 
However, such audits can be very labor intensive and thus expensive. Therefore, we 
should look for automated tooling to at least prevent the most common pitfalls.

4.2 STATIC ANALYSIS TOOLING FOR
  SMART CONTRACTS

EVEN THOUGH COMPUTER SOFTWARE IS (STILL) NOT CAPABLE OF DEDUCING A  
USER’S INTENT, THERE ARE PLENTY OF COMMON MISTAKES AND PITFALLS THAT ARE 
“MACHINE DETECTABLE”. Such static analysis tools can, besides finding potential 
mistakes, also help in simply getting a better understanding of the code’s behavior.

16 http://truffleframework.com/
17 There are already firms providing audit services for smart contracts, for example https://zeppelin.solutions/security-audits.

Writing secure software is not a ‘new 
thing’ and there are already general 
software development best practices 
that are very applicable to smart 
contract creation.

ALERT

ERROR
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In practice, the compiler itself already forms the first line of defense; a proper type 
system prevents a whole class of bugs and typically compilers issue warnings for 
expressions that are most likely to be mistakes (e.g., the use of the assignment 
operator “=” in an if statement instead of the comparison operator “==”). Static analysis 
tools take this a step further and look for more and larger “patterns” of potential bugs.

Static analysis tools can be applied to both the human-readable smart contract 
language and the more low-level bytecode. Application to the first has the advantage 
that it gives the tool more (contextual) information and that it is able to give the user 
better feedback how to correct potential errors, while application to the latter is also 
possible when the original source is not available, which in the case of Ethereum is not 
uncommon. In addition, static analysis on bytecode has the advantage it analyses the 
code that is actually being run, circumventing potential bugs in the compiler.

A number of analysis tools for Ethereum’s Solidity language have been developed in 
the past few years. Solium18 for example is a so called linter19 for the Solidity language 
that can detect predefined potential problematic patterns in the abstract syntax tree of 
a given smart contract. Solgraph20 uses a more visual approach by producing control-
flow graphs to help detect potential (security) problems.

There are plenty of common mistakes 
and pitfalls that are “machine 
detectable”.

Similarly, analysis tools have started to become available that analyze the low-level 
(EVM) byte code directly. Porosity21 for example, is an open source decompiler that  
takes EVM byte code and turns it into Solidity code that is more palatable for human 
inspection for (security) issues. The tool itself also already checks for potential security 
issues. Oyente22 is another open source static analysis tool for EVM byte code and 
accompanied by an academic paper [13]. It is based on symbolic execution of a subset 
of the EVM (called EtherLite), which allows it to thoroughly check with some heuristics 
for a number of predefined security problems, including transaction-ordering 
dependence, timestamp-dependence, and mishandled exceptions. The open source 
Mythril project23 is a recent addition to the static analysis toolbox. Like Oyente, it can 
check EVM byte code for a number predefined security issues. In addition, it provides 
basic visualizations of control flow.

18 https://github.com/duaraghav8/Solium
19 A linter is a tool for detecting and flagging errors and suspicious language usage in source code, including stylistic errors.
20 https://github.com/raineorshine/solgraph
21 https://github.com/comaeio/porosity
22 https://github.com/melonproject/oyente
23 https://github.com/b-mueller/mythril/
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In addition to these stand-alone tools, companies are also starting to provide online 
services that can automatically check for potential vulnerabilities in smart contracts. 
Securify24 for example is providing an automated online analysis tool to find known 
critical security vulnerabilities and typical coding mistakes, partially based on formal 
method technologies (see next section). Quantstamp25 takes this a step further and 
aims to provide a (token-based) platform for incentivized manual and automated audits 
for securing (Ethereum) smart contracts.

As mentioned above, exploitable bugs are the result of a mismatch between what is 
expected and what is actually defined, which is the gap such analysis tools aim to 
bridge. However, in order to do this, static analysis tools need some kind of definition of 
the semantics of the platform. And preferably, both a formal definition of the semantics 
[24] and a formal specification of the intent, which brings us in the world of formal 
methods.

24 http://securify.ch/
25 https://quantstamp.com/
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4.3 FORMAL VERIFICATION OF  
  SMART CONTRACTS

DETERMINING WHETHER OR NOT A PIECE OF (SMART CONTRACT) CODE MATCHES 
ONE’S EXPECTATIONS IS KNOWN TO BE UNDECIDABLE. But if the code would be 
accompanied by rigorous mathematical proofs that show that certain high level 
properties always hold, this will increase the confidence in said code, as long as the 
high level properties, as defined in the specification, connect well to the expectations. 
Or to put it in other words, the gap between intention and proven high level properties 
is likely to be smaller. Even though theory tells us it is not possible to automatically 
prove the correctness of all possible programs in general, it is possible to prove the 
correctness of many useful ones.26 Formal methods is the field that works on such 
formal proofs for code and because of the relative small size of typical smart contracts, 
they are the perfect landing ground for recent academic advancements in this area. 
This is also recognized in the Ethereum community and several initiatives are under 
way [25].

FIGURE 2: CONCEPTUALLY, A SMART CONTRACT EXISTS IN DIFFERENT LAYERS, AND FOR EACH LAYER FORMAL  
METHODS CAN HELP IN UNDERSTANDING.
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SMART CONTRACT LANGUAGE
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CPU
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HUMAN

COMPILER
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26 See also the presentation by Andrew Miller, “Ethereum Isn’t Turing Complete, and It Doesn’t Matter Anyway” (https://youtu.be/cGFOKTm_8zk).
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A smart contract conceptually exists at various ‘layers’. At the highest layer it is a 
non-executable design or algorithm that may or may not be formalized. Often there is 
an intermediate, human readable form expressed in a smart contract language (in case 
of Ethereum typically Solidity), which is then translated into byte code by a compiler. 
The byte code itself is then interpreted or compiled (just-in-time) by a virtual machine 
(EVM in case of Ethereum) to execute the smart contract on the CPU27 of each of the 
nodes in the blockchain network (see also Figure 2). And for each of these layers, 
formal methods can play a role in either increasing confidence of a specific smart 
contract or increasing confidence in the platform as a whole.

Formally specifying the algorithm to use in a smart contract and the accompanying 
invariants (i.e., specification), will already increase the confidence in the design and 
unearth tricky edge-cases. Furthermore, formal method tools like TLA+28, created for 
the specification and verification of concurrent and distributed systems, appear to map 
well to the multi-transactional behavior of smart contracts, as explored in a recent 
paper by Sergey et al. [26]. For example, they show how The DAO’s reentrancy issue is 
an instance of “concurrentesque” behavior that can be modeled and analyzed as such. 
We believe that specifying and analyzing smart contracts in tools like TLA+ is 
something to be explored further and has the potential to prevent many problems and 
uncover issues in already deployed smart contracts.

Of course, ideally, one would want the smart contract code or even the low-level byte 
code to be accompanied by similar proofs of the smart contract’s high-level properties. 
Such certified code can provide a much more “end-to-end” proof of correctness, 
provided of course both the compiler and the VM (or interpreter) executing the smart 
contract code are also correct. A number of efforts in the Ethereum community have 
started along this path.

One of the first efforts was an addition to the standard Solidity compiler [27] that 
allows Solidity smart contracts to be annotated with Hoare-style pre-/postconditions. 
The compiler translates this to an intermediate functional language (ML) to be able to 
apply the Why3 tool [28] for the verification of basic safety properties. However, an 
approach like this assumes that the compiler is correct and produces the expected 
EVM code, which in the case of Solidity has already been shown to be an issue.29

If code would be accompanied by 
rigorous mathematical proofs that 
show that certain high level properties 
always hold, this will increase the 
confidence in said code.

27 Of course, there are many more layers below this level.
28 http://lamport.azurewebsites.net/tla/tla.html
29 At least two bugs in the Solidity compiler have had potential security implications, see https://blog.ethereum.org/2017/05/03/solidity-optimi-

zer-bug/ and https://blog.ethereum.org/2016/11/01/security-alert-solidity-variables-can-overwritten-storage/.
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The next step is to also prove high-level properties of low-level byte code. Bhargavan et 
al. [29] use the programming language and verification framework F*30 in a two-
pronged approach. They provide both a tool that converts a subset of Solidity to F* and 
a decompiler that translates EVM code to F*. The latter can not only be used to analyze 
smart contracts for which the source code is unavailable, it also allows for the 
equivalence proofs between a Solidity program and the byte code output of the Solidity 
compiler.

Even though theory tells us it is not 
possible to automatically prove the 
correctness of all possible programs 
in general, it is possible to prove the 
correctness of many useful ones.

A different approach is taken by Ethereum’s formal methods engineer Yoichi Hirai.  
He formalized the semantics of the Ethereum Virtual Machine (EVM)31 in Lem32, which 
can be compiled to specifications that can be used with theorem provers such as Coq33 

and Isabelle/HOL34. It is still work-in-progress, but he used it already to produce a 
limited safety proof for a relatively small and simple smart contract [30].

Similarly, the KEVM project35 also started from the semi-formal yellow paper [4] to 
create an executable and human readable model of reference semantics for EVM 
programs. It uses the K framework36, which is a rewrite-based executable semantic 
framework. The process of producing these reference semantics already uncovered a 
number of ambiguities [24] in the Ethereum Yellow Paper [4]. In addition, the reference 
semantics were used to produce an executable EVM interpreter that passes all the 
existing official EVM stress tests for compliant EVM implementations. Furthermore, the 
accompanying paper [24], shows how the reference semantics can be used to produce 
analysis tools automatically.

30 https://www.fstar-lang.org/
31 https://github.com/pirapira/eth-isabelle
32 https://www.cl.cam.ac.uk/%7Epes20/lem/
33 https://coq.inria.fr/
34 https://isabelle.in.tum.de/
35 https://github.com/kframework/evm-semantics
36  http://www.kframework.org
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Of course, formal methods are also no silver bullet. First of all, formal methods  
can only check for those properties that are actually specified. Besides mistakes in 
specifications, if important and relevant properties and invariants are not specified, 
one can still be surprised by the “formally proven” smart contract code. For example, 
consider a smart contract for governing a crowd funding process. If one omits to specify 
that a participant should never be able to back out with more than originally 
contributed, then no formal verification will be able to detect mistakes in the code that 
would allow for the violation of such a relatively obvious constraint. In addition, writing 
proofs is still hard. While the fact that smart contracts are relatively small helps 
somewhat in that regard, it is still a non-trivial endeavor for which there is room for 
additional research and development. Furthermore, this calls for the development of 
libraries of re-usable patterns and building blocks for smart contracts with formally 
proven properties, both at the algorithmic level and at the implementation level (see 
also the section below).

Preferably, formal verification should eventually also be applied to other aspects of  
the blockchain stack to gain (more) confidence in the execution of smart contracts.  
In particular the implementation of the VM executing the smart contract’s bytecode 
should receive additional attention. A more recent addition to the blockchain 
landscape, Tezos37, is making strides in that regard. The project’s software itself is 
written in the OCaml, a programming language that has its origin in formal verification 
research. In addition, the project supports smart contracts in a newly developed 
language called Michelson that is designed to be amenable to formal verification  
(see also the next section).

37 https://www.tezos.com
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4.4 ALTERNATIVE APPROACHES FOR  
  EXPRESSING SMART CONTRACTS

A SMART CONTRACT LANGUAGE IS THE VEHICLE FOR TRANSLATING INTENT INTO CODE 
THAT IS TO BE EXECUTED ON AND VALIDATED BY THE BLOCKCHAIN NODES. Preferably, 
such a language should be easy to understand and reason about; a smart contract 
author should not be surprised by (the semantics of) the language. Unfortunately, the 
most prolific smart contract language, Ethereum’s Solidity, does not fit that description.

Solidity is a statically typed programming language specifically designed for 
implementing smart contracts on the Ethereum platform. To make Solidity more 
approachable and familiar for existing web developers, its syntax was designed around 
ECMAScript (JavaScript). However, over time it has become clear Solidity is a somewhat 
hastily designed, complex language with many surprising quirks and oddities that make 
it easy to accidentally introduce security flaws. A sampling of the issues reported 
elsewhere (from [31], [32]):
–  The semantics of operators differ depending on whether the operands are literals or 

not (e.g., 1/2 is 0.5, but x/y for x=1 and y=2 is 0).
–  The order of evaluation is not defined for expressions, which is problematic as the 

language has value-returning mutating operators like ++.
–  Copy is by reference or by value depending on where the operands are stored.  

This is implicit – the operation looks exactly the same in code.
–  The Map data type does not throw an exception on non-existing keys, it just returns 

the default value.
–  Integer overflow and underflow bugs are possible.
–  Superficially, Solidity looks like an object oriented language and has a “this” 

keyword. However, there are security-critical differences between “this.setX()” and 
“setX()” that can cause wrong results. 

–  Because the literal 0 type-infers to byte, a for loop like “for (var i = 0; i < a.length; i 
++) { a[i] = i; }” will result in an “infinite”39  loop if a[] has more than 255 elements 
as i will wrap around to zero.

–  Statements allow, but do not require, braces around bodies, which is the cause of a 
whole class of bugs in C-syntax inspired languages.

–  All state is mutable by default.

38 See https://github.com/ethereum/solidity/issues/583.
39 On the Ethereum platform this is not really infinite as execution is limited by the amount of gas provided.
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As a consequence, people are starting to work on alternatives for Solidity with less 
surprising semantics, including in the Ethereum community. Viper40, for example, is an 
experimental smart contract language that compiles to EVM bytecode and has a 
python-like syntax that aims for security, simplicity and auditability. The language 
deliberately does not support certain constructions that were allowed in Solidity but 
can cause confusion. For example, Viper does not support class inheritance, operator 
overloading, and recursive calling. In addition, the aforementioned Ethereum formal 
methods engineer Yoichi Hirai is also experimenting with a new language for the 
Ethereum platform called Bamboo41. This similarly experimental language tries to 
minimize the chances for surprise by making state transitions explicit and avoiding 
re-entrancy problems by default. Petterson and Edström [33] also target the Ethereum 
Virtual Machine, but instead produced a domain-specific language (DSL) inside the 
existing functional programming language Idris. With Idris’ support for dependent types 
and algebraic side-effects they showed how such an approach can be used to prevent 
several classes of common errors.

The Ethereum VM (EVM) was for some reason made fairly low level; it uses a  
stack-based instruction set, more akin to a processor, despite being interpreted.  
This approach has the downside that such low-level code is hard to reason about, 
which is why some blockchain projects take a different approach. The Tezos project42 
for example, a public, open source blockchain with a strong focus on governance and 
correctness, introduced a domain-specific language for writing smart contracts called 
Michelson43. It is a stack-based language (as is the EVM), but in contrast to the EVM 
bytecode it is strongly typed and it has a number of higher-level operators and data 
types [34]. Furthermore, the language was specifically designed to facilitate formal 
verification (see previous section), allowing the users to prove properties of their smart 
contracts. Another difference is that Michelson contracts are not stored on a 
blockchain as binary bytecode, but as human-readable text. But even though Michelson 
code is human-readable, it is still fairly low-level, which is why there are also higher-
level languages in development. One of which is Liquidity44, a smart contract language 
with an OCaml-like syntax that compiles to Michelson and for which a formal 
verification framework is under development.

40 https://github.com/ethereum/viper
41 https://github.com/pirapira/bamboo
42 https://www.tezos.com/
43 http://www.michelson-lang.com/
44 http://www.liquidity-lang.org/

Preferably, a programming language 
should be easy to understand and 
reason about; a smart contract 
author should not be surprised by the 
language. Unfortunately, Ethereum’s 
Solidity does not fit that description.
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The Kadena project, a commercial, permissioned blockchain platform, uses a similar 
approach and developed a special-purpose smart contract language. Like with Tezos, 
smart contracts are stored in a (Kadena) blockchain in its human-readable form.  
Their (open sourced) Pact45 is a lisp-based, deliberately Turing-incomplete language 
[35] that favors a declarative, functional approach over complex control-flow, with the 
aim of making bugs harder to write and easier to spot. The latest version of Pact 
supports types and allows for the application of formal methods to thoroughly check 
type correctness [36], but there does not yet appear to be any development on the  
use of formal methods to verify general high-level invariants.

In the world of permissioned (consortium) blockchains there are several platforms that 
leverage Ethereum’s Solidity and EVM. This includes for example Hyperledger46 (based 
on Monax47) and JP Morgan’s Quorum48. Interestingly, many of the blockchain platforms 
coming out of industrial consortia use or propose to use general purpose languages  
for smart contracts. For example, in Hyperledger Fabric49 one needs to use the Go 
programming language50 to write smart contracts in (which the platform calls 
“ChainCode”), with plans to support Java and even JavaScript (node.js) in the future. 
Similarly, Corda51 from the financial R3 consortium, uses the Java programming 
language for smart contract development. While using an existing, general purpose 
programming language might make writing smart contract code more approachable 
initially, there are a number of serious downsides in choosing such an approach:
1. It is (too) easy to accidentally write non-deterministic programs that prevent 

consensus.
2. It is harder to prove high-level properties.
3. There is a real danger of incorporating (existing) non-essential code, producing a 

larger attack surface.

Finally, we would like to propose to also consider more radically different approaches to 
expressing smart contracts, preferably those that allow for better communication with 
domain experts. At TNO, for example, we are working on extending the existing open 
source Go programming language52 to generate validated smart contracts from 
business rules, declaratively expressed [37] in relation algebra. Furthermore, there are 
various additional avenues to explore for bridging the gap between domain experts and 
digital smart contract platforms. This includes interactive tooling and visualizations for 
the exploration of the implications of smart contracts.

45 http://kadena.io/pact/
46 https://www.hyperledger.org/projects/hyperledger-burrow
47 https://monax.io/
48 https://www.jpmorgan.com/global/Quorum
49 https://www.hyperledger.org/projects/fabric
50 https://golang.org/
51 https://www.corda.net/
52 http://ampersandtarski.github.io/

While using an existing, general 
purpose programming language might 
make writing smart contract code 
more approachable initially, there are 
a number of serious downsides in 
choosing such an approach.
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4.5 UPGRADE & GOVERNANCE  
  STRATEGIES FOR SMART CONTRACTS

IT IS SOMETIMES USEFUL TO BE ABLE TO MODIFY OR REPLACE SMART CONTRACTS, 
NOT JUST BECAUSE OF MISTAKES, BUT ALSO DUE TO CHANGING SITUATIONS, NEW 
INSIGHTS, OR EVEN COURT ORDERS. However, it should be clear for all parties involved 
under what circumstances smart contract code can be changed. This is something that 
can and should also be expressed in smart contract code through something like a 
proxy construction.53 For example, one could specify that a certain piece of smart 
contract code can only be changed if 5 out of 9 predefined stewards agree.

Of course, there might still be doubts about the correctness of the governing code 
itself, though this will be partially mitigated by the fact that the reusability of such 
governance strategies will allow for the application in a broad range of settings, 
increasing confidence over time. In addition, the aforementioned formal verification 
approaches can provide additional assurances on the correctness.

53 In such a construction, calls to a proxy contract are forwarded to another contract, the address of which is stored in the contract.  
The proxy contract also contains the logic that determines under what circumstances this address can be changed to another address.

Specifying the governance of smart 
contracts through other smart 
contracts is a good way to still keep  
“a human in the loop”.

In a way, such governance of smart contracts through other smart contracts form a 
middle ground between fully distributed at the one end and centralized at the other. 
One can also think of it as an escape hatch or a way to still keep “a human in the loop”. 
Which strategies work for which situations is something to be explored and put to the 
test to reach a set of reusable strategies for multiple smart contract platforms. Further 
inspiration for this can also be found in traditional contract law. As explored by Marino 
et al. [38], contract law has developed a well-honed set of tools for altering and 
undoing contracts, that, while not applicable as-is, appears to be an excellent starting 
point for upgradeable smart contracts.

Some hands-on advice and examples of upgrade smart contracts for the Ethereum 
platform is available in for example ConsenSys’ smart contract best practices guide 
[22].
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4.6 LIBRARY OF PATTERNS FOR  
  SMART CONTRACTS

THE UPGRADE STRATEGIES DISCUSSED ABOVE ARE IN FACT ONLY ONE TYPE OF 
REUSABLE PATTERNS; THERE ARE VARIOUS OTHER PROGRAMMING PATTERNS IN 
SMART CONTRACTS THAT CAN BE REUSED. This includes for example ways to handle 
token issuance, ownership of a smart contract, authenticated data providers (oracles), 
and conditional transfer of funds. An initial first overview of programming patterns 
found in Ethereum smart contracts is provided in [39]. In terms of reusable code for the 
Ethereum platform, the OpenZeppelin project provides an open source framework54 for 
writing secure smart contracts and includes a number of common contract security 
patterns.

We believe that a library of battle-tested patterns (and accompanying reference 
implementations) can help in preventing common mistakes and badly re-invented 
wheels. As security issues are typically subtle and only surface after a while, a properly 
documented design pattern can prevent future instances of that same issue. In the 
world of software engineering, and in particular the area of object-oriented design, 
design patterns are a well known approach for abstract descriptions of solutions for 
common problems [40]. The use of design patterns is not without critique, and indeed, 
care must be taken of course not to add complexity and reduce ability to reason about 
smart contracts by enthusiastically applying patterns.

Furthermore, such patterns for smart contracts should preferably be accompanied by 
descriptions of formally proven properties such that these patterns can confidently be 
combined and tuned for specific applications.

54 https://github.com/OpenZeppelin/zeppelin-solidity

Additional developments are needed 
to support the creation of robust and 
secure smart contracts that society 
can depend on.
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5. DISCUSSION AND CONCLUSION

SMART CONTRACTS HAVE THE POTENTIAL TO RADICALLY CHANGE THE WAY WE 
INTERACT AND TRANSACT WITH EACH OTHER. But before we transfer the control of 
high-value assets to pieces of code running on a set of distributed (i.e., other peoples’) 
computers, there are number of things to be achieved. Most prominently, smart 
contracts require a different development process than traditional (web) software 
development; the hostile environment they run in and the unchangeable nature can 
make mistakes very costly, as illustrated in this paper. There are already a number of 
best practices that can help in bridging the gap between intention and code to reduce 
the chances for (exploitable) bugs. In addition, the application of formal methods has 
shown great potential in proving high-level (safety) properties. Nonetheless, there is still 
plenty of room for R&D in this regard.

Unfortunately, the most prevalent smart contract language, Ethereum’s Solidity, is 
embarrassingly unfit for the job of expressing one’s intent and expectations. Luckily, 
there are already some alternatives in development with less surprising semantics, 
both on the Ethereum platform and on other (new) platforms. But also in this area 
additional developments are needed for the creation of robust and secure smart 
contracts.
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