
WILL THAT
SMART CONTRACT
REALLY DO WHAT
YOU EXPECT
IT TO DO?

WHITE PAPER
januari 2018

Maarten Everts
Frank Muller

SMART CONTRACT SECURIT Y 2 / 28

Smart contracts are believed to be
the next step in inter-party automation;
traditional trusted third parties are
to be replaced by small pieces of
code running on a distributed system.
However, at the end of the day,
these smart contracts controlling
high-value assets are pieces of code
written by fallible humans.
And because of the special nature of
smart contracts, mistakes or bugs
can have a significant financial
impact, as illustrated by a number of
recent high-profile incidents. In this
white paper we explore this problem
further and describe a number of
strategies and approaches for the
creation of secure and robust smart
contracts, some of which can be
applied right now, while others require
additional research & development to
be applicable.

SMART CONTRACT SECURIT Y 3 / 28

CONTENTS

INTRODUCTION
4

BLOCKCHAIN AND SMART CONTRACTS
6

CONSENSUS IN PUBLIC AND IN CONSORTIA
7

TOWARDS ROBUST AND SECURE
SMART CONTRACTS
12

DISCUSSION AND CONCLUSION
25

SMART CONTRACT SECURIT Y 4 / 28

1. INTRODUCTION

BITCOIN1 STARTED AS A GRASS-ROOTS PROJECT AND HAS SHOWN HOW ITS
UNDERLYING BLOCKCHAIN TECHNOLOGY CAN BE USED TO BUILD A DISTRIBUTED,
TRUSTLESS2 VALUE-EXCHANGE SYSTEM ON THE GLOBAL INTERNET. The Ethereum
project3, seen by some as the second-generation blockchain, built on Bitcoin’s ideas to
produce a strongly decentralized platform that allows for programmable transfer of
ownership of value, including virtual assets and representations of real-world assets.

Through so called smart contracts, users can precisely codify their agreements and
trust relations, which after deployment will automatically be executed by the (Ethereum)
platform. The vision for these smart contracts is that they will facilitate economic
activity by effectively providing services that are traditionally offered by (trusted) third
parties and intermediaries (e.g., banks, notaries, courts).

However, that what makes smart contracts such a powerful concept is also its Achilles’
heel. After deployment on the blockchain platform, the smart contract itself cannot be
modified or manipulated anymore, which is what gives all participants the confidence
to depend on it. But this very same property also makes any mistake in the code of the
smart contract very hard (or near impossible) to correct.

The blockchain world is thus moving towards a future in which we yield the control of
high value assets to smart contracts that:
– are unchangeable, autonomous and unstoppable,
– are publicly visible and analyzable,
– run in a public, hostile environment,4
– are written by fallible humans.

A number of recent incidents concerning bugs in smart contracts leading to multi-
million losses (see Section 3) have shown this is a recipe for disaster and illustrate that
authoring smart contracts requires a different set of development practices than the
happy-go-lucky style that is common in current mainstream software development [1].

1 https://bitcoin.org
2 As in, there is no need to trust another participant to do the right thing, as long as the majority is honest.
3 https://ethereum.org
4 For consortium or permissioned blockchains this is not necessarily the case, see section 2.1.

That what makes smart contracts such
a powerful concept is also its Achilles’
heel.

SMART CONTRACT SECURIT Y 5 / 28

TRUST

CODE

LANGUAGE

FALLIBLE
HUMANS

CONTROL

FINANCIAL IMPACT

In this paper we will first dive into the world of smart contracts in Section 2 and then
continue in Section 3 to explore the ways smart contracts can fail. This is followed by
a discussion of a number of strategies and approaches for the creation of robust and
secure smart contracts. Do note that while this paper appears to focus on the
Ethereum platform, this is mostly because the prevalence and momentum of the
platform makes illustrative failure cases and (partial) solutions more abundant than
for other platforms.

SMART CONTRACT SECURIT Y 6 / 28

2. BLOCKCHAIN AND SMART CONTRACTS

FROM A TECHNICAL PERSPECTIVE, A BLOCKCHAIN PLATFORM CONSISTS OF A PEER-
TO-PEER NETWORK OF A NUMBER OF COMPUTER NODES, OWNED BY MUTUALLY
DISTRUSTING DISTINCT ENTITIES, COLLABORATING TO REACH CONSENSUS ON THE
ORDER OF CHANGES TO THEIR EVER-CHANGING SHARED REALITY (I.E., A DATABASE).
The changes to the shared reality come in the form of transactions, for each of which
the participating nodes need to decide and agree whether they conform to the rules
agreed upon. In Bitcoin, for example, this shared reality is a ledger of who owns what
bitcoin and in Ethereum it is the state of a replicated, though slow, “world computer”
that is programmable using so called smart contracts. On top of all this, the user-facing
applications are (to be) built. The above concise description of blockchain technology
nicely maps to a 4-layer model, as illustrated in Figure 1.

FIGURE 1: A FOUR-LAYER MODEL FOR BLOCKCHAIN TECHNOLOGY

APPLICATION
LAYER

TRANSACTION
LAYER

Logic to decide whether
transactions are valid,
e.g. with the help of SMART CONTRACTS

CONSENSUS
LAYER

Algorithms and protocols
to agree on which transactions
to incorporate

Network responsible
for broadcasting
data among nodes

User facing applications that
use blockchain technology

NETWORK [P2P]
LAYER

SMART CONTRACT SECURIT Y 7 / 28

3. CONSENSUS IN PUBLIC AND IN
 CONSORTIA

ON THE PUBLIC BITCOIN AND ETHEREUM PLATFORMS, FITTING WITH THEIR
LIBERTARIAN ROOTS, ANYONE CAN JOIN AND PARTICIPATE IN THE CONSENSUS
PROCESS, AND NO PERMISSION FROM SOME CENTRAL AUTHORITY IS NEEDED; ONE
ONLY NEEDS TO BE WILLING DO SOME (COMPUTATIONAL) WORK IN THE FORM OF
FINDING A SOLUTION TO A CRYPTOGRAPHIC PUZZLE.5 Participants are also
compensated for this work with the platform’s internal currency, as long as their
contribution to the consensus process abides to the consensus rules.

Later, driven by the need for more (regulatory) control, privacy, and capacity, so called
permissioned or consortium blockchains started to be developed. In such consortium
blockchains, all parties are typically (legally) identifiable and permissions on who can
participate are strictly, if not centrally, controlled. Prime examples of such consortium
blockchain initiatives are the Hyperledger Fabric project6 and R3’s Corda project7.

3.1 SMART CONTRACTS

MUCH OF THE EXCITEMENT (AND HYPE) SURROUNDING BLOCKCHAIN TECHNOLOGY
REVOLVES AROUND THE PROMISE OF SMART CONTRACTS. These (relatively) small
pieces of software code are evaluated by all8 the nodes of a blockchain platform when
triggered through incoming transactions. The rules and algorithms in the smart
contract can in this way govern the ownership of assets (e.g., digital currency) and other
“state” as described in the code. Assuming an honest majority of nodes, the smart
contracts will always execute as specified, which is what makes them suitable to take
on the role of an efficient, impartial intermediary; all stakeholders can depend on the
truthful execution of the code, without any one party having the ability to interfere.
Applications range from basic multi-signature wallets and escrow services to full-blown
“Distributed Autonomous Organizations” (DAOs), where the latter are virtual companies
that are fully governed by code and do not have identifiable owners.

From the start, Bitcoin has had a form of programmability with “Scripts” [2] that
allow one to express the rules of how and when funds could be “unlocked”, but it is
deliberately limited and it was not the main focus of the project. In contrast, for
Ethereum programmability was the main selling point when it was introduced [3], [4] as
a distributed, blockchain-based platform with a built-in Turing-complete9 programming
language to create smart contracts with.

5 This process called “proof-of-work” is currently used by most public permissionless blockchains, which basically boils down to trying many possible
solutions until you find one that fits the requirements. Due to the high (energy) cost of this consensus approach, many are looking for alternatives, of
which proof-of-stake is most promiment. In proof of stake, your “voting right” in the consensus mechanism does not depend on your computational
power, but the amount of currency you have (and put “at stake”).

6 https://www.hyperledger.org/projects/fabric
7 https://www.corda.net/
8 Actually not necessarily all nodes, this depends on the blockchain platform; in particular the consortium blockchains include controls to decide which

code is run and seen by which participant for confidentiality and performance reasons.
9 Semi-Turing complete actually; all execution of smart contract code is bounded as the caller of the code has to supply “gas”: compensation for the

execution payed in the platform currency (ether).

SMART CONTRACT SECURIT Y 8 / 28

Although both the term and the concept of a smart contract were already introduced
in 1996 by Nick Szabo [5], the birth of the Ethereum platform made the term more
widespread. Consequently, Ethereum is currently the most prevalent smart contract
platform in terms of visibility, momentum, and development tooling. Smart contracts
on Ethereum are submitted to the platform in the form of low-level binary bytecode
that is to be executed on a special purpose virtual machine (EVM) by all the nodes.
The low-level bytecode is typically produced through compilation from a high-level,
human readable language, of which Solidity10 is the most prevalent.11

Also in the world of permissioned (consortium) blockchains smart contracts play an
important role. Some use Ethereum’s EVM and development ecosystem (e.g., Monax12
and Quorum13), while others use traditional general purpose programming languages.
For example Hyperledger Fabric uses the Go programming language to program smart
contracts in (which they call “ChainCode”) and R3’s Corda uses Java. At the end of the
day though, smart contracts are still code written by fallible humans, which means
mistakes are likely to be made.

3.2 HOW SMART CONTRACTS CAN FAIL

A SMART CONTRACT, LIKE ANY COMPUTER CODE, ALWAYS SIMPLY EXECUTES AS
SPECIFIED, AND FOR THE PLATFORM ITSELF THERE IS NO RIGHT OR WRONG. One
talks of mistakes or bugs in code when there is a (strong) mismatch between the
underlying intention, assumption, or expectation and the actual code that is executed.
As mentioned in the introduction, such mismatches have in the past already resulted in
a number of multi-million dollar incidents.

One talks of mistakes or bugs in code
when there is a (strong) mismatch
between the underlying intention,
assumption, or expectation and the
actual code that is executed.

10 https://solidity.readthedocs.io
11 One of the earliest languages for the EVM was “Serpent”, a python inspired language that since has been deprecated because of the many (security

related) problems in its compiler. [6]
12 https://monax.io/
13 https://github.com/jpmorganchase/quorum

SMART CONTRACT SECURIT Y 9 / 28

3.3 HIGH-PROFILE SMART CONTRACT
 FAILURES

THE MOST FAMOUS INCIDENT TO DATE WAS IN THE SUMMER OF 2016, WHEN “THE
DAO”, A SMART CONTRACT GOVERNED VIRTUAL COMPANY RUNNING ON THE
ETHEREUM PLATFORM, IMPLODED AFTER AN EXPLOITABLE BUG HAD BEEN FOUND IN
THE SMART CONTRACT CODE. The DAO was an example of a Distributed Autonomous
Organization, and in essence, a virtual investment fund, that allowed participants to
buy a stake, which would give them proportional voting rights on which future proposals
should be funded. To the surprise –and perhaps even dismay of the initiators– The DAO
managed to collect nearly $150M worth (at the time) of ether. However, shortly after
the crowd-funding period, an attacker managed to gain control over a significant
portion of the value in the fund (nearly $60M), due to a bug in the smart contract
code [7]. The resolution came in the form of a controversial, coordinated platform
intervention that reverted the theft and dismantled the The DAO. Some opposed this
intervention, feeling it violated the “code-is-law” principle [8], and pushed for a fork of
the platform (see [9] for a back story).

The attacker managed to gain control
over nearly $60M in the fund due to a
bug in the smart contract code.

ATTACK

BUG

CONTROL

$60M

MISTAKE

SMART CONTRACT SECURIT Y 10 / 28

Approximately a year later, another smart contract bug resulted in a multi-million dollar
theft. The Parity multi-sig wallet allows one to spread control of funds over multiple
people, for example by only allowing the transfer of funds when 2 out of 3 pre-defined
signatures are presented. Unfortunately, there turned out to be a small mistake in the
initialization code, allowing an attacker to trivially gain control of the wallet and divert
the funds inside elsewhere. As a number of high-profile crowd-funded projects used
this wallet to manage their funds, this simple bug resulted in the theft of approximately
$30M [10].

Interestingly, only a few months later there was another multi-million dollar incident
with the updated version of the very same Parity multi-sig wallet. This time, $160M
worth of ether was accidentally frozen because a bug in a so-called library contract
allowed the library contract be triggered to disable and remove itself, locking up the
funds of all 500+ wallets that depend on this code [11]. As this issue appears to be
less contentious than The DAO incident, it is not unlikely there will be some sort of
platform intervention to unlock these funds.

3.4 MISTAKES IN SMART CONTRACTS

WHEN WRITING SMART CONTRACTS –AS IS THE CASE FOR ANY OTHER PIECE OF
SOFTWARE– THERE IS OF COURSE PLENTY OF ROOM FOR STRAIGHT-UP LOGIC
ERRORS, IN PARTICULAR IN MORE COMPLEX SMART CONTRACTS. However, smart
contract platforms themselves have a number of specific subtleties and pitfalls that
can lead to (potentially exploitable) mistakes (see [12]–[14] for an overview).

On the Ethereum platform for example, a smart contract transferring ether to an
account can trigger the execution of code in case that particular account is governed
by another smart contract, which can sometimes lead to surprising effects. To
illustrate, the bug in the infamous “The DAO” smart contract was a subtle reentrancy
issue; neither the authors of the smart contract nor the reviewers had realized that a
seemingly benign transfer of ether would allow an attacker to re-invoke the same piece
of code in the smart contract, manipulating its internal state more than the intended
one time [7]. Similarly, a smart contract author can easily be surprised by the effects of
code executed as a result of a transfer of ether if the various forms of exceptions
supported by the EVM are not properly handled. Such mishandling of exceptions is
what caused the demise of the (not so serious) “King of the Ether Throne” smart
contract.14

Smart contract platforms themselves
have a number of specific subtleties
and pitfalls that can lead to potentially
exploitable mistakes.

14 See https://www.kingoftheether.com/postmortem.html for a post-mortem.

SMART CONTRACT SECURIT Y 11 / 28

In addition, one needs to consider the environment the smart contracts “live” in.
Even though the invocations of a smart contract are executed by all participating nodes
in a blockchain network to make sure it is executed correctly, the node (i.e., miner)
that produces the block can sometimes still have some subtle influence on the
outcome of a smart contract. In smart contracts with transaction-ordering dependence
for example, miners can re-order transactions in a block for their advantage, and in
smart contracts with timestamp dependence miners have some flexibility in choosing
the timestamp for the block, which for example can be used to influence a timestamp-
based lottery [13].

Finally, the problems smart contracts try to solve often include some aspects of
“fairness” and game theory, which is something that is still hard to model and put
into code. According to some, the aforementioned and now defunct “The DAO” smart
contract, also contained a number of game-theoretic flaws besides the fatal flaw
that led to its demise [15]. In addition, one needs to remember that by default, all
information the smart contract bases its decisions on is public. Keeping certain pieces
of information private will typically require the use of authenticated data-sources
(oracles) or advanced (zero-knowledge) cryptography [16], which is non-trivial in its
own right.

In general, it appears that the Ethereum platform itself, and in particular its Solidity
language make writing smart contracts error prone (see also the next section). Atzei et
al. [14] provide an excellent systematic survey of attacks on Ethereum smart contracts.

3.5 SEMANTICS IN SMART CONTRACTS

BESIDES THE EXECUTION, ANOTHER POTENTIAL SOURCE OF SURPRISE OR CONFUSION
IS THE MEANING OR SEMANTICS OF THE CONCEPTS THAT A SMART CONTRACT
REFERS TO. Rigorous, well-defined semantics are crucial to be able to make a mapping
between real-world and digital concepts. The importance of semantics is well illustrated
by the Mars Climate Orbiter incident in which the spacecraft was lost on entry to the
Martian atmosphere because one of the software components used imperial rather
than metric units [17]. While [13] recognized that a “semantic gap” frequently exists
and is partially responsible for the failure of smart contracts to execute as expected,
their focus is on the semantics of the underlying infrastructure rather than the
semantics embedded in the smart contract. Even though there have not yet been
(recorded) incidents of smart contract issues caused by semantic confusion, this is
bound to happen as smart contracts become more complex and interconnected. There
is a wide variety of standards, vocabularies and ontologies available for different
domains to formalize the relations and meaning of concepts used (cf. for example
schema.org) but so far no research has been undertaken on the integration of such
semantic vocabularies into smart contracts.

SMART CONTRACT SECURIT Y 12 / 28

4. TOWARDS ROBUST AND SECURE
 SMART CONTRACTS

THE ABOVE DISCUSSION ILLUSTRATES THAT BECAUSE OF THEIR PARTICULAR
NATURE AND THE ENVIRONMENT THEY “LIVE” IN, SMART CONTRACTS REQUIRE A
DEVELOPMENT PROCESS THAT IS DIFFERENT FROM TRADITIONAL SOFTWARE
DEVELOPMENT. It is more akin to the development of safety critical software or the
development of hardware (silicon). In fact, the guidelines, tooling and wisdom from
these fields already provide a solid basis to draw inspiration from for the development
of secure and robust smart contracts.

In this section we highlight a number of strategies and approaches for the creation of
secure and robust smart contracts that can be applied right now as well as approaches
that require additional research and development.

4.1 BEST PRACTICES

WRITING SECURE SOFTWARE IS NOT A ‘NEW THING’ AND THERE ARE ALREADY
GENERAL SOFTWARE DEVELOPMENT BEST PRACTICES THAT ARE VERY APPLICABLE
TO SMART CONTRACT CREATION. This includes among others, risk analysis, collection
of security requirements, identification of abuse cases, and a proper definition of the
attacker model. However, due to their nature and the (hostile) environment they live in,
smart contracts require extra, if not special, attention. In addition, there are a number
of platform-specific pitfalls to avoid.

After the high-profile security incidents, the Ethereum community started focusing more
on the security of smart contracts. A number of blog posts have been dedicated to the
subject [18]–[20] and various security guidelines have been published, both inside the
official Solidity documentation [21] and elsewhere [22]. Some guidelines are very
platform (Ethereum) specific, while others are more general. We will highlight a number
of them in this section and the following.

A first general step is simply keeping smart contracts small and simple. In addition to a
reduced attack surface, having a smaller amount of code makes it easier to reason
about and scan for potential vulnerabilities. This comes down to consciously deciding
what aspects of the business logic should be put in the smart contract and what parts
can safely be pushed towards the ‘edges’ of the platform. Only those aspects that
relate to security and trust (or the lack thereof) should be incorporated in the smart
contract.15 Of course, as discussed elsewhere [22], there are subtle trade-offs to
consider in terms of simplicity, reusability and being able to reason about code.

15 Some parallels can be drawn to so called applets running on smart cards. Like smart contracts, smart cards have limited computing power (low
power) and they provide security services. And similarly, mistakes in smart card applets can have a high financial impact and are non-trivial to patch.

SMART CONTRACT SECURIT Y 13 / 28

General software development best practices that are also very suitable for smart
contracts include defensive programming, fuzzing, and use of automated tests and
test frameworks. For example, Truffle16 is a development and testing framework for
Ethereum (Solidity) smart contracts.

Furthermore, as with traditional software, code reviews [23] and code audits17 can
prove very valuable in preventing bad smart contract code from going into production.
However, such audits can be very labor intensive and thus expensive. Therefore, we
should look for automated tooling to at least prevent the most common pitfalls.

4.2 STATIC ANALYSIS TOOLING FOR
 SMART CONTRACTS

EVEN THOUGH COMPUTER SOFTWARE IS (STILL) NOT CAPABLE OF DEDUCING A
USER’S INTENT, THERE ARE PLENTY OF COMMON MISTAKES AND PITFALLS THAT ARE
“MACHINE DETECTABLE”. Such static analysis tools can, besides finding potential
mistakes, also help in simply getting a better understanding of the code’s behavior.

16 http://truffleframework.com/
17 There are already firms providing audit services for smart contracts, for example https://zeppelin.solutions/security-audits.

Writing secure software is not a ‘new
thing’ and there are already general
software development best practices
that are very applicable to smart
contract creation.

ALERT

ERROR

SMART CONTRACT SECURIT Y 14 / 28

In practice, the compiler itself already forms the first line of defense; a proper type
system prevents a whole class of bugs and typically compilers issue warnings for
expressions that are most likely to be mistakes (e.g., the use of the assignment
operator “=” in an if statement instead of the comparison operator “==”). Static analysis
tools take this a step further and look for more and larger “patterns” of potential bugs.

Static analysis tools can be applied to both the human-readable smart contract
language and the more low-level bytecode. Application to the first has the advantage
that it gives the tool more (contextual) information and that it is able to give the user
better feedback how to correct potential errors, while application to the latter is also
possible when the original source is not available, which in the case of Ethereum is not
uncommon. In addition, static analysis on bytecode has the advantage it analyses the
code that is actually being run, circumventing potential bugs in the compiler.

A number of analysis tools for Ethereum’s Solidity language have been developed in
the past few years. Solium18 for example is a so called linter19 for the Solidity language
that can detect predefined potential problematic patterns in the abstract syntax tree of
a given smart contract. Solgraph20 uses a more visual approach by producing control-
flow graphs to help detect potential (security) problems.

There are plenty of common mistakes
and pitfalls that are “machine
detectable”.

Similarly, analysis tools have started to become available that analyze the low-level
(EVM) byte code directly. Porosity21 for example, is an open source decompiler that
takes EVM byte code and turns it into Solidity code that is more palatable for human
inspection for (security) issues. The tool itself also already checks for potential security
issues. Oyente22 is another open source static analysis tool for EVM byte code and
accompanied by an academic paper [13]. It is based on symbolic execution of a subset
of the EVM (called EtherLite), which allows it to thoroughly check with some heuristics
for a number of predefined security problems, including transaction-ordering
dependence, timestamp-dependence, and mishandled exceptions. The open source
Mythril project23 is a recent addition to the static analysis toolbox. Like Oyente, it can
check EVM byte code for a number predefined security issues. In addition, it provides
basic visualizations of control flow.

18 https://github.com/duaraghav8/Solium
19 A linter is a tool for detecting and flagging errors and suspicious language usage in source code, including stylistic errors.
20 https://github.com/raineorshine/solgraph
21 https://github.com/comaeio/porosity
22 https://github.com/melonproject/oyente
23 https://github.com/b-mueller/mythril/

SMART CONTRACT SECURIT Y 15 / 28

In addition to these stand-alone tools, companies are also starting to provide online
services that can automatically check for potential vulnerabilities in smart contracts.
Securify24 for example is providing an automated online analysis tool to find known
critical security vulnerabilities and typical coding mistakes, partially based on formal
method technologies (see next section). Quantstamp25 takes this a step further and
aims to provide a (token-based) platform for incentivized manual and automated audits
for securing (Ethereum) smart contracts.

As mentioned above, exploitable bugs are the result of a mismatch between what is
expected and what is actually defined, which is the gap such analysis tools aim to
bridge. However, in order to do this, static analysis tools need some kind of definition of
the semantics of the platform. And preferably, both a formal definition of the semantics
[24] and a formal specification of the intent, which brings us in the world of formal
methods.

24 http://securify.ch/
25 https://quantstamp.com/

SMART CONTRACT SECURIT Y 16 / 28

4.3 FORMAL VERIFICATION OF
 SMART CONTRACTS

DETERMINING WHETHER OR NOT A PIECE OF (SMART CONTRACT) CODE MATCHES
ONE’S EXPECTATIONS IS KNOWN TO BE UNDECIDABLE. But if the code would be
accompanied by rigorous mathematical proofs that show that certain high level
properties always hold, this will increase the confidence in said code, as long as the
high level properties, as defined in the specification, connect well to the expectations.
Or to put it in other words, the gap between intention and proven high level properties
is likely to be smaller. Even though theory tells us it is not possible to automatically
prove the correctness of all possible programs in general, it is possible to prove the
correctness of many useful ones.26 Formal methods is the field that works on such
formal proofs for code and because of the relative small size of typical smart contracts,
they are the perfect landing ground for recent academic advancements in this area.
This is also recognized in the Ethereum community and several initiatives are under
way [25].

FIGURE 2: CONCEPTUALLY, A SMART CONTRACT EXISTS IN DIFFERENT LAYERS, AND FOR EACH LAYER FORMAL
METHODS CAN HELP IN UNDERSTANDING.

ALGORITHM

IMPLEMENTATION IN
SMART CONTRACT LANGUAGE

BYTECODE

CPU
INSTRUCTIONS

HUMAN

COMPILER

VIRTUAL MACHINE

26 See also the presentation by Andrew Miller, “Ethereum Isn’t Turing Complete, and It Doesn’t Matter Anyway” (https://youtu.be/cGFOKTm_8zk).

SMART CONTRACT SECURIT Y 17 / 28

A smart contract conceptually exists at various ‘layers’. At the highest layer it is a
non-executable design or algorithm that may or may not be formalized. Often there is
an intermediate, human readable form expressed in a smart contract language (in case
of Ethereum typically Solidity), which is then translated into byte code by a compiler.
The byte code itself is then interpreted or compiled (just-in-time) by a virtual machine
(EVM in case of Ethereum) to execute the smart contract on the CPU27 of each of the
nodes in the blockchain network (see also Figure 2). And for each of these layers,
formal methods can play a role in either increasing confidence of a specific smart
contract or increasing confidence in the platform as a whole.

Formally specifying the algorithm to use in a smart contract and the accompanying
invariants (i.e., specification), will already increase the confidence in the design and
unearth tricky edge-cases. Furthermore, formal method tools like TLA+28, created for
the specification and verification of concurrent and distributed systems, appear to map
well to the multi-transactional behavior of smart contracts, as explored in a recent
paper by Sergey et al. [26]. For example, they show how The DAO’s reentrancy issue is
an instance of “concurrentesque” behavior that can be modeled and analyzed as such.
We believe that specifying and analyzing smart contracts in tools like TLA+ is
something to be explored further and has the potential to prevent many problems and
uncover issues in already deployed smart contracts.

Of course, ideally, one would want the smart contract code or even the low-level byte
code to be accompanied by similar proofs of the smart contract’s high-level properties.
Such certified code can provide a much more “end-to-end” proof of correctness,
provided of course both the compiler and the VM (or interpreter) executing the smart
contract code are also correct. A number of efforts in the Ethereum community have
started along this path.

One of the first efforts was an addition to the standard Solidity compiler [27] that
allows Solidity smart contracts to be annotated with Hoare-style pre-/postconditions.
The compiler translates this to an intermediate functional language (ML) to be able to
apply the Why3 tool [28] for the verification of basic safety properties. However, an
approach like this assumes that the compiler is correct and produces the expected
EVM code, which in the case of Solidity has already been shown to be an issue.29

If code would be accompanied by
rigorous mathematical proofs that
show that certain high level properties
always hold, this will increase the
confidence in said code.

27 Of course, there are many more layers below this level.
28 http://lamport.azurewebsites.net/tla/tla.html
29 At least two bugs in the Solidity compiler have had potential security implications, see https://blog.ethereum.org/2017/05/03/solidity-optimi-

zer-bug/ and https://blog.ethereum.org/2016/11/01/security-alert-solidity-variables-can-overwritten-storage/.

SMART CONTRACT SECURIT Y 18 / 28

The next step is to also prove high-level properties of low-level byte code. Bhargavan et
al. [29] use the programming language and verification framework F*30 in a two-
pronged approach. They provide both a tool that converts a subset of Solidity to F* and
a decompiler that translates EVM code to F*. The latter can not only be used to analyze
smart contracts for which the source code is unavailable, it also allows for the
equivalence proofs between a Solidity program and the byte code output of the Solidity
compiler.

Even though theory tells us it is not
possible to automatically prove the
correctness of all possible programs
in general, it is possible to prove the
correctness of many useful ones.

A different approach is taken by Ethereum’s formal methods engineer Yoichi Hirai.
He formalized the semantics of the Ethereum Virtual Machine (EVM)31 in Lem32, which
can be compiled to specifications that can be used with theorem provers such as Coq33

and Isabelle/HOL34. It is still work-in-progress, but he used it already to produce a
limited safety proof for a relatively small and simple smart contract [30].

Similarly, the KEVM project35 also started from the semi-formal yellow paper [4] to
create an executable and human readable model of reference semantics for EVM
programs. It uses the K framework36, which is a rewrite-based executable semantic
framework. The process of producing these reference semantics already uncovered a
number of ambiguities [24] in the Ethereum Yellow Paper [4]. In addition, the reference
semantics were used to produce an executable EVM interpreter that passes all the
existing official EVM stress tests for compliant EVM implementations. Furthermore, the
accompanying paper [24], shows how the reference semantics can be used to produce
analysis tools automatically.

30 https://www.fstar-lang.org/
31 https://github.com/pirapira/eth-isabelle
32 https://www.cl.cam.ac.uk/%7Epes20/lem/
33 https://coq.inria.fr/
34 https://isabelle.in.tum.de/
35 https://github.com/kframework/evm-semantics
36 http://www.kframework.org

SMART CONTRACT SECURIT Y 19 / 28

Of course, formal methods are also no silver bullet. First of all, formal methods
can only check for those properties that are actually specified. Besides mistakes in
specifications, if important and relevant properties and invariants are not specified,
one can still be surprised by the “formally proven” smart contract code. For example,
consider a smart contract for governing a crowd funding process. If one omits to specify
that a participant should never be able to back out with more than originally
contributed, then no formal verification will be able to detect mistakes in the code that
would allow for the violation of such a relatively obvious constraint. In addition, writing
proofs is still hard. While the fact that smart contracts are relatively small helps
somewhat in that regard, it is still a non-trivial endeavor for which there is room for
additional research and development. Furthermore, this calls for the development of
libraries of re-usable patterns and building blocks for smart contracts with formally
proven properties, both at the algorithmic level and at the implementation level (see
also the section below).

Preferably, formal verification should eventually also be applied to other aspects of
the blockchain stack to gain (more) confidence in the execution of smart contracts.
In particular the implementation of the VM executing the smart contract’s bytecode
should receive additional attention. A more recent addition to the blockchain
landscape, Tezos37, is making strides in that regard. The project’s software itself is
written in the OCaml, a programming language that has its origin in formal verification
research. In addition, the project supports smart contracts in a newly developed
language called Michelson that is designed to be amenable to formal verification
(see also the next section).

37 https://www.tezos.com

SMART CONTRACT SECURIT Y 20 / 28

4.4 ALTERNATIVE APPROACHES FOR
 EXPRESSING SMART CONTRACTS

A SMART CONTRACT LANGUAGE IS THE VEHICLE FOR TRANSLATING INTENT INTO CODE
THAT IS TO BE EXECUTED ON AND VALIDATED BY THE BLOCKCHAIN NODES. Preferably,
such a language should be easy to understand and reason about; a smart contract
author should not be surprised by (the semantics of) the language. Unfortunately, the
most prolific smart contract language, Ethereum’s Solidity, does not fit that description.

Solidity is a statically typed programming language specifically designed for
implementing smart contracts on the Ethereum platform. To make Solidity more
approachable and familiar for existing web developers, its syntax was designed around
ECMAScript (JavaScript). However, over time it has become clear Solidity is a somewhat
hastily designed, complex language with many surprising quirks and oddities that make
it easy to accidentally introduce security flaws. A sampling of the issues reported
elsewhere (from [31], [32]):
– The semantics of operators differ depending on whether the operands are literals or

not (e.g., 1/2 is 0.5, but x/y for x=1 and y=2 is 0).
– The order of evaluation is not defined for expressions, which is problematic as the

language has value-returning mutating operators like ++.
– Copy is by reference or by value depending on where the operands are stored.

This is implicit – the operation looks exactly the same in code.
– The Map data type does not throw an exception on non-existing keys, it just returns

the default value.
– Integer overflow and underflow bugs are possible.
– Superficially, Solidity looks like an object oriented language and has a “this”

keyword. However, there are security-critical differences between “this.setX()” and
“setX()” that can cause wrong results.

– Because the literal 0 type-infers to byte, a for loop like “for (var i = 0; i < a.length; i
++) { a[i] = i; }” will result in an “infinite”39 loop if a[] has more than 255 elements
as i will wrap around to zero.

– Statements allow, but do not require, braces around bodies, which is the cause of a
whole class of bugs in C-syntax inspired languages.

– All state is mutable by default.

38 See https://github.com/ethereum/solidity/issues/583.
39 On the Ethereum platform this is not really infinite as execution is limited by the amount of gas provided.

SMART CONTRACT SECURIT Y 21 / 28

As a consequence, people are starting to work on alternatives for Solidity with less
surprising semantics, including in the Ethereum community. Viper40, for example, is an
experimental smart contract language that compiles to EVM bytecode and has a
python-like syntax that aims for security, simplicity and auditability. The language
deliberately does not support certain constructions that were allowed in Solidity but
can cause confusion. For example, Viper does not support class inheritance, operator
overloading, and recursive calling. In addition, the aforementioned Ethereum formal
methods engineer Yoichi Hirai is also experimenting with a new language for the
Ethereum platform called Bamboo41. This similarly experimental language tries to
minimize the chances for surprise by making state transitions explicit and avoiding
re-entrancy problems by default. Petterson and Edström [33] also target the Ethereum
Virtual Machine, but instead produced a domain-specific language (DSL) inside the
existing functional programming language Idris. With Idris’ support for dependent types
and algebraic side-effects they showed how such an approach can be used to prevent
several classes of common errors.

The Ethereum VM (EVM) was for some reason made fairly low level; it uses a
stack-based instruction set, more akin to a processor, despite being interpreted.
This approach has the downside that such low-level code is hard to reason about,
which is why some blockchain projects take a different approach. The Tezos project42
for example, a public, open source blockchain with a strong focus on governance and
correctness, introduced a domain-specific language for writing smart contracts called
Michelson43. It is a stack-based language (as is the EVM), but in contrast to the EVM
bytecode it is strongly typed and it has a number of higher-level operators and data
types [34]. Furthermore, the language was specifically designed to facilitate formal
verification (see previous section), allowing the users to prove properties of their smart
contracts. Another difference is that Michelson contracts are not stored on a
blockchain as binary bytecode, but as human-readable text. But even though Michelson
code is human-readable, it is still fairly low-level, which is why there are also higher-
level languages in development. One of which is Liquidity44, a smart contract language
with an OCaml-like syntax that compiles to Michelson and for which a formal
verification framework is under development.

40 https://github.com/ethereum/viper
41 https://github.com/pirapira/bamboo
42 https://www.tezos.com/
43 http://www.michelson-lang.com/
44 http://www.liquidity-lang.org/

Preferably, a programming language
should be easy to understand and
reason about; a smart contract
author should not be surprised by the
language. Unfortunately, Ethereum’s
Solidity does not fit that description.

SMART CONTRACT SECURIT Y 22 / 28

The Kadena project, a commercial, permissioned blockchain platform, uses a similar
approach and developed a special-purpose smart contract language. Like with Tezos,
smart contracts are stored in a (Kadena) blockchain in its human-readable form.
Their (open sourced) Pact45 is a lisp-based, deliberately Turing-incomplete language
[35] that favors a declarative, functional approach over complex control-flow, with the
aim of making bugs harder to write and easier to spot. The latest version of Pact
supports types and allows for the application of formal methods to thoroughly check
type correctness [36], but there does not yet appear to be any development on the
use of formal methods to verify general high-level invariants.

In the world of permissioned (consortium) blockchains there are several platforms that
leverage Ethereum’s Solidity and EVM. This includes for example Hyperledger46 (based
on Monax47) and JP Morgan’s Quorum48. Interestingly, many of the blockchain platforms
coming out of industrial consortia use or propose to use general purpose languages
for smart contracts. For example, in Hyperledger Fabric49 one needs to use the Go
programming language50 to write smart contracts in (which the platform calls
“ChainCode”), with plans to support Java and even JavaScript (node.js) in the future.
Similarly, Corda51 from the financial R3 consortium, uses the Java programming
language for smart contract development. While using an existing, general purpose
programming language might make writing smart contract code more approachable
initially, there are a number of serious downsides in choosing such an approach:
1. It is (too) easy to accidentally write non-deterministic programs that prevent

consensus.
2. It is harder to prove high-level properties.
3. There is a real danger of incorporating (existing) non-essential code, producing a

larger attack surface.

Finally, we would like to propose to also consider more radically different approaches to
expressing smart contracts, preferably those that allow for better communication with
domain experts. At TNO, for example, we are working on extending the existing open
source Go programming language52 to generate validated smart contracts from
business rules, declaratively expressed [37] in relation algebra. Furthermore, there are
various additional avenues to explore for bridging the gap between domain experts and
digital smart contract platforms. This includes interactive tooling and visualizations for
the exploration of the implications of smart contracts.

45 http://kadena.io/pact/
46 https://www.hyperledger.org/projects/hyperledger-burrow
47 https://monax.io/
48 https://www.jpmorgan.com/global/Quorum
49 https://www.hyperledger.org/projects/fabric
50 https://golang.org/
51 https://www.corda.net/
52 http://ampersandtarski.github.io/

While using an existing, general
purpose programming language might
make writing smart contract code
more approachable initially, there are
a number of serious downsides in
choosing such an approach.

SMART CONTRACT SECURIT Y 23 / 28

4.5 UPGRADE & GOVERNANCE
 STRATEGIES FOR SMART CONTRACTS

IT IS SOMETIMES USEFUL TO BE ABLE TO MODIFY OR REPLACE SMART CONTRACTS,
NOT JUST BECAUSE OF MISTAKES, BUT ALSO DUE TO CHANGING SITUATIONS, NEW
INSIGHTS, OR EVEN COURT ORDERS. However, it should be clear for all parties involved
under what circumstances smart contract code can be changed. This is something that
can and should also be expressed in smart contract code through something like a
proxy construction.53 For example, one could specify that a certain piece of smart
contract code can only be changed if 5 out of 9 predefined stewards agree.

Of course, there might still be doubts about the correctness of the governing code
itself, though this will be partially mitigated by the fact that the reusability of such
governance strategies will allow for the application in a broad range of settings,
increasing confidence over time. In addition, the aforementioned formal verification
approaches can provide additional assurances on the correctness.

53 In such a construction, calls to a proxy contract are forwarded to another contract, the address of which is stored in the contract.
The proxy contract also contains the logic that determines under what circumstances this address can be changed to another address.

Specifying the governance of smart
contracts through other smart
contracts is a good way to still keep
“a human in the loop”.

In a way, such governance of smart contracts through other smart contracts form a
middle ground between fully distributed at the one end and centralized at the other.
One can also think of it as an escape hatch or a way to still keep “a human in the loop”.
Which strategies work for which situations is something to be explored and put to the
test to reach a set of reusable strategies for multiple smart contract platforms. Further
inspiration for this can also be found in traditional contract law. As explored by Marino
et al. [38], contract law has developed a well-honed set of tools for altering and
undoing contracts, that, while not applicable as-is, appears to be an excellent starting
point for upgradeable smart contracts.

Some hands-on advice and examples of upgrade smart contracts for the Ethereum
platform is available in for example ConsenSys’ smart contract best practices guide
[22].

SMART CONTRACT SECURIT Y 24 / 28

4.6 LIBRARY OF PATTERNS FOR
 SMART CONTRACTS

THE UPGRADE STRATEGIES DISCUSSED ABOVE ARE IN FACT ONLY ONE TYPE OF
REUSABLE PATTERNS; THERE ARE VARIOUS OTHER PROGRAMMING PATTERNS IN
SMART CONTRACTS THAT CAN BE REUSED. This includes for example ways to handle
token issuance, ownership of a smart contract, authenticated data providers (oracles),
and conditional transfer of funds. An initial first overview of programming patterns
found in Ethereum smart contracts is provided in [39]. In terms of reusable code for the
Ethereum platform, the OpenZeppelin project provides an open source framework54 for
writing secure smart contracts and includes a number of common contract security
patterns.

We believe that a library of battle-tested patterns (and accompanying reference
implementations) can help in preventing common mistakes and badly re-invented
wheels. As security issues are typically subtle and only surface after a while, a properly
documented design pattern can prevent future instances of that same issue. In the
world of software engineering, and in particular the area of object-oriented design,
design patterns are a well known approach for abstract descriptions of solutions for
common problems [40]. The use of design patterns is not without critique, and indeed,
care must be taken of course not to add complexity and reduce ability to reason about
smart contracts by enthusiastically applying patterns.

Furthermore, such patterns for smart contracts should preferably be accompanied by
descriptions of formally proven properties such that these patterns can confidently be
combined and tuned for specific applications.

54 https://github.com/OpenZeppelin/zeppelin-solidity

Additional developments are needed
to support the creation of robust and
secure smart contracts that society
can depend on.

SMART CONTRACT SECURIT Y 25 / 28

5. DISCUSSION AND CONCLUSION

SMART CONTRACTS HAVE THE POTENTIAL TO RADICALLY CHANGE THE WAY WE
INTERACT AND TRANSACT WITH EACH OTHER. But before we transfer the control of
high-value assets to pieces of code running on a set of distributed (i.e., other peoples’)
computers, there are number of things to be achieved. Most prominently, smart
contracts require a different development process than traditional (web) software
development; the hostile environment they run in and the unchangeable nature can
make mistakes very costly, as illustrated in this paper. There are already a number of
best practices that can help in bridging the gap between intention and code to reduce
the chances for (exploitable) bugs. In addition, the application of formal methods has
shown great potential in proving high-level (safety) properties. Nonetheless, there is still
plenty of room for R&D in this regard.

Unfortunately, the most prevalent smart contract language, Ethereum’s Solidity, is
embarrassingly unfit for the job of expressing one’s intent and expectations. Luckily,
there are already some alternatives in development with less surprising semantics,
both on the Ethereum platform and on other (new) platforms. But also in this area
additional developments are needed for the creation of robust and secure smart
contracts.

ACKNOWLEDGMENTS
We would like to thank Christopher Brewster and Jaco van de Pol for their helpful
comments on early drafts of this paper.

SMART CONTRACT SECURIT Y 26 / 28

REFERENCES
[1] Veracode, “State of software security 2017,” 2017. [Online]. Available: https://info.veracode.

com/report-state-of-software-security.html
[2] Andreas M. Antonopoulos, Mastering bitcoin: Programming the open blockchain, 2nd ed.

O’Reilly Media, Inc., 2017.
[3] “Ethereum white paper.” [Online]. Available: https://github.com/ethereum/wiki/wiki/Whi-

te-Paper
[4] Gavin Wood, “Ethereum: A secure decentralised generalised transaction ledger.” [Online].

Available: http://gavwood.com/paper.pdf
[5] Nick Szabo, “Smart contracts: Building blocks for digital markets,” 1996. [Online]. Available:

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinter-
school2006/szabo.best.vwh.net/smart_contracts_2.html

[6] Amy Castor, “One of ethereum’s earliest smart contract languages is headed for retirement,”
August-2017. [Online]. Available: https://www.coindesk.com/one-of-ethereums-earliest-
smart-contract-languages-is-headed-for-retirement/

[7] Phil Daian, “Analysis of the dao exploit,” June-2016. [Online]. Available: http://hackingdistri-
buted.com/2016/06/18/analysis-of-the-dao-exploit/

[8] Lawrence Lessig, Code 2.0, 2nd ed. Paramount, CA: CreateSpace, 2009.
[9] Matthew Leising, “The ether thief,” June-2017. [Online]. Available: https://www.bloomberg.

com/features/2017-the-ether-thief/
[10] Santagio Palladino, “The parity wallet hack explained,” July-2017. [Online]. Available: https://

blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
[11] Alyssa Hertig, “Ethereum client bug freezes user funds as fallout remains uncertain,” Novem-

ber-2017. [Online]. Available: https://www.coindesk.com/ethereum-client-bug-freezes-user-
funds-fallout-remains-uncertain/

[12] Kevin Delmolino, Mitchell Arnett, Ahmed E. Kosba, Andrew Miller, and Elaine Shi, “Step by
step towards creating a safe smart contract: Lessons and insights from a cryptocurrency lab,”
IACR Cryptology ePrint Archive, vol. 2015, p. 460, 2015.

[13] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor, “Making smart
contracts smarter,” in ACM conference on computer and communications security, 2016, pp.
254–269.

[14] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli, “A survey of attacks on ethereum
smart contracts sok,” in Proceedings of the 6th international conference on principles of
security and trust - volume 10204, 2017, pp. 164–186 [Online]. Available: https://doi.
org/10.1007/978-3-662-54455-6_8

[15] Vlad Zamfir Dino Mark and Emin Gün Sirer, “A call for a temporary moratorium on the dao,”
May-2016. [Online]. Available: http://hackingdistributed.com/2016/05/27/dao-call-for-mora-
torium/

[16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou,
“Hawk: The blockchain model of cryptography and privacy-preserving smart contracts,” in
IEEE symposium on security and privacy, SP 2016, san jose, ca, usa, may 22-26, 2016,
2016, pp. 839–858 [Online]. Available: https://doi.org/10.1109/SP.2016.55

[17] Nancy G. Leveson, “The role of software in spacecraft accidents,” AIAA Journal of Spacecraft
and Rockets, vol. 41, pp. 564–575, 2004.

[18] Vitalik Buterin, “Thinking about smart contract security,” June-2016. [Online]. Available:
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/

[19] Solidity Smart contract Security best practices, “Nikhil mohan,” August-2017. [Online].
Available: https://lightrains.com/blogs/smart-contract-best-practices-solidity

[20] Manuel Araoz, “Onward with ethereum smart contract security,” August-2016. [Online].
Available: https://blog.zeppelin.solutions/onward-with-ethereum-smart-contract-securi-
ty-97a827e47702

[21] Ethereum Project, “Solidity - security considerations.” [Online]. Available: http://solidity.
readthedocs.io/en/develop/security-considerations.html

[22] ConsenSys, “Ethereum contract security techniques and tips,” September-2017. [Online].
Available: https://github.com/ConsenSys/smart-contract-best-practices

[23] Eric Rafaloff, “Reviewing ethereum smart contracts,” September-2017. [Online]. Available:
https://blog.gdssecurity.com/labs/2017/9/27/reviewing-ethereum-smart-contracts.html

[24] Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip Daian, Dwight
Guth, and Grigore Rosu, “KEVM: A complete semantics of the ethereum virtual machine,”
August 2017 [Online]. Available: http://hdl.handle.net/2142/97207

[25] Christian Reitwiessner, “Dev update: Formal methods,” September-2016. [Online]. Available:
https://blog.ethereum.org/2016/09/01/formal-methods-roadmap/

[26] Ilya Sergey and Aquinas Hobor, “A concurrent perspective on smart contracts,” CoRR, vol.
abs/1702.05511, 2017.

[27] Christian Reitwiessner, “Formal verification for solidity contracts,” October-2015. [Online].
Available: https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-con-
tracts

[28] Jean-Christophe Filliâtre and Andrei Paskevich, “Why3 – Where Programs Meet Provers,” in
ESOP’13 22nd European Symposium on Programming, 2013, vol. 7792 [Online]. Available:
https://hal.inria.fr/hal-00789533

[29] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi, Georges
Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swa-
my, and Santiago Zanella-Béguelin, “Formal verification of smart contracts: Short paper,” in
Proceedings of the 2016 acm workshop on programming languages and analysis for security,
2016, pp. 91–96 [Online]. Available: http://doi.acm.org/10.1145/2993600.2993611

[30] Yoichi Hirai, “Formal verification of deed contract in ethereum name service,” Novem-
ber-2016. [Online]. Available: https://yoichihirai.com/deed.pdf

[31] peoplewindow, “HackerNews comment on “underhanded solidity coding contest”,” July-2017.
[Online]. Available: https://news.ycombinator.com/item?id=14691212

[32] “HackerNews comment on “153k ether stolen in parity multi-sig attack”,” July-2017. [Online].
Available: https://news.ycombinator.com/item?id=14810008

[33] Jack Pettersson and Robert Edström, “Safer smart contracts through type-driven develop-
ment,” Master’s thesis, Institutionen för data- och informationsteknik (Chalmers), Chalmers
tekniska högskola, 2016.

[34] Tezos, September-2017. [Online]. Available: https://github.com/tezos/tezos/blob/master/
src/proto/alpha/docs/language.md

[35] Stuart Popejoy, “The pact smart-contract language,” June-2017. [Online]. Available: http://
kadena.io/docs/Kadena-PactWhitepaper.pdf

[36] Stuart Popejoy, “Types (and type inference) in pact,” January-2017. [Online]. Available: http://
kadena.io/blog/

https://info.veracode.com/report-state-of-software-security.html
https://info.veracode.com/report-state-of-software-security.html
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://gavwood.com/paper.pdf
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.coindesk.com/one-of-ethereums-earliest-smart-contract-languages-is-headed-for-retirement/
https://www.coindesk.com/one-of-ethereums-earliest-smart-contract-languages-is-headed-for-retirement/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://www.bloomberg.com/features/2017-the-ether-thief/
https://www.bloomberg.com/features/2017-the-ether-thief/
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://www.coindesk.com/ethereum-client-bug-freezes-user-funds-fallout-remains-uncertain/
https://www.coindesk.com/ethereum-client-bug-freezes-user-funds-fallout-remains-uncertain/
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
http://hackingdistributed.com/2016/05/27/dao-call-for-moratorium/
http://hackingdistributed.com/2016/05/27/dao-call-for-moratorium/
https://doi.org/10.1109/SP.2016.55
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://lightrains.com/blogs/smart-contract-best-practices-solidity
https://blog.zeppelin.solutions/onward-with-ethereum-smart-contract-security-97a827e47702
https://blog.zeppelin.solutions/onward-with-ethereum-smart-contract-security-97a827e47702
http://solidity.readthedocs.io/en/develop/security-considerations.html
http://solidity.readthedocs.io/en/develop/security-considerations.html
https://github.com/ConsenSys/smart-contract-best-practices
https://blog.gdssecurity.com/labs/2017/9/27/reviewing-ethereum-smart-contracts.html
http://hdl.handle.net/2142/97207
https://blog.ethereum.org/2016/09/01/formal-methods-roadmap/
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://hal.inria.fr/hal-00789533
http://doi.acm.org/10.1145/2993600.2993611
https://yoichihirai.com/deed.pdf
https://news.ycombinator.com/item?id=14691212
https://news.ycombinator.com/item?id=14810008
https://github.com/tezos/tezos/blob/master/src/proto/alpha/docs/language.md
https://github.com/tezos/tezos/blob/master/src/proto/alpha/docs/language.md
http://kadena.io/docs/Kadena-PactWhitepaper.pdf
http://kadena.io/docs/Kadena-PactWhitepaper.pdf
http://kadena.io/blog/
http://kadena.io/blog/

SMART CONTRACT SECURIT Y 27 / 28

[37] Gerard Michels, Sebastiaan Joosten, Jaap van der Woude, and Stef Joosten, “Ampersand,” in
Relational and algebraic methods in computer science: 12th international conference, ramics
2011, rotterdam, the netherlands, may 30 – june 3, 2011. Proceedings, H. de Swart, Ed. Ber-
lin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 280–293 [Online]. Available: https://
doi.org/10.1007/978-3-642-21070-9_21

[38] Bill Marino and Ari Juels, “Setting standards for altering and undoing smart contracts,”
in Rule technologies. Research, tools, and applications: 10th international symposium,
ruleml 2016, stony brook, ny, usa, july 6-9, 2016. Proceedings, J. J. Alferes, L. Bertossi, G.
Governatori, P. Fodor, and D. Roman, Eds. Cham: Springer International Publishing, 2016, pp.
151–166 [Online]. Available: https://doi.org/10.1007/978-3-319-42019-6_10

[39] Massimo Bartoletti and Livio Pompianu, “An empirical analysis of smart contracts: Platforms,
applications, and design patterns,” CoRR, vol. abs/1703.06322, 2017.

[40] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design patterns: Elements
of reusable object-oriented software. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1995.

https://doi.org/10.1007/978-3-642-21070-9_21
https://doi.org/10.1007/978-3-642-21070-9_21
https://doi.org/10.1007/978-3-319-42019-6_10

TNO.NL

CONTACT
Maarten Everts
Unit ICT – Cyber Security and Robustness
	 Locatie Groningen
 maarten.everts@tno.nl
	 088 866 31 90

1
7
-9
4
8
3

januari 2018

