
UbiKiMa: Ubiquitous authentication using a smartphone,
migrating from passwords to strong cryptography

∗

Short paper

Maarten H. Everts
TNO

maarten.everts@tno.nl

Jaap-Henk Hoepman
Radboud University Nijmegen

jhh@cs.ru.nl

Johanneke Siljee
TNO

johanneke.siljee@tno.nl

ABSTRACT

Passwords are the only ubiquitous form of authentication cur-
rently available on the web. Unfortunately, passwords are in-
secure. In this paper we therefore propose the use of strong
cryptography, using the fact that users increasingly own a smart-
phone that can perform the required cryptographic operations
on their behalf.

This is not as trivial as it sounds. Services will not migrate to
new forms of authentication if few users have the means to use
it. Similarly, users will not acquire the means if there are few
services that accept them. Moreover, enabling one’s smartphone
to seamlessly sign in at a website when browsing on an arbitrary
PC is non-trivial.

We propose a system, based on a smartphone app, that can be
used to sign in with username and password to arbitrary web-
sites using an arbitrary PC or laptop. We describe the protocol
and implementation to achieve this without the need for typing
usernames and passwords. Furthermore, we propose an authen-
tication protocol based on public key cryptography, integrated
in the same smartphone app. This allows websites to seamlessly
migrate towards a much more secure authentication method on
the web, independently of each other.

A prototype of our system has been developed.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection; K.6.5 [Ma-

nagement Of Computing And Information Systems]: Security
and Protection

Keywords

identity management; passwords; strong authentication

∗This research is supported by the research program Sentinels
(www.sentinels.nl) as project ’Mobile Identity Management’
(10522). Sentinels is being financed by Technology Founda-
tion STW, the Netherlands Organization for Scientific Research
(NWO), and the Dutch Ministry of Economic Affairs.
This research was performed within the Privacy & Identity Lab
www.pilab.nl and funded by SIDN.nl.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DIM’13, November 8, 2013, Berlin, Germany.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2493-9/13/11 ...$15.00.

http://dx.doi.org/10.1145/2517881.2517885.

1. INTRODUCTION
Passwords are the only ubiquitous form of authentication cur-

rently available on the web. Unfortunately, passwords are in-
secure, so they need to be replaced by a stronger method of
authentication [9, 4].

The ultimate goal of our work is to replace the use of pass-
words and to ensure the ubiquitous use of public key cryptogra-
phy for authentication. This is a challenge for several reasons.
(1) Service providers (aka relying parties (RP)) need to support
this new form of authentication. This requires them to change
systems, which incurs a cost. They will not invest unless they
see an advantage. (2) Users access services through a multi-
tude of browsers and devices, being office desktops, home PCs
or tablets. (3) Users prefer a consistent user experience. (5)
Users resist solutions that require them to install new software
or update existing software. In certain cases they are not even in
the position to do so, for example at PCs at work, or in Internet
cafés.

We are inspired by the recent surge in password management
apps for smartphones as the ideal wedge to break this status
quo. These days, many users own smartphones that are capable
of performing strong cryptographic operations, and that have
a graphical user interface. We propose a system that explic-
itly supports a migration path from passwords to secure cryp-
tographic authentication. It allows users and relying parties to
increase their security gradually at every step. These steps can
be made independently, allowing each party to decide to move
forward when they see the advantage.

In the first step users decide to use their smartphone to man-
age their passwords and to authenticate at relying parties. Their
benefit is manifold: their passwords are stored in one place,
need no longer be memorised, and are always with them. In
addition, account passwords no longer need to be stored within
a browser at work or at a PC shared with others. Finally, the au-
thentication app supports the generation of strong passwords.
All this increases security for the user.

In the second step users install a bookmarklet1 in their browser.
By clicking on the bookmarklet (and confirming sign-on on their
phone) the smartphone app logs the user in automatically. Pass-
words no longer need to be entered manually, increasing the
user experience. All that is required is the installation of a book-
marklet and registration at a proxy. The way the proxy is used
ensures minimal privacy consequences2.

1We were inspired by the bookmarklet used by
www.instapaper.com.
2Not all devices may allow the installation of a bookmarklet. In
the future, pre-installed browser extensions or eventually native
browser support are foreseen.

www.sentinels.nl
www.pilab.nl
www.instapaper.com

Figure 1: System components.

All migration steps so far cover the user side of the equation.
At any point, and in parallel to the above sketched path, relying
parties may choose to support the public key based form of au-
thentication. All code at the client side supports this option from
the start. Whenever a relying party upgrades, users are offered
the option to upgrade to the new (much more secure) form of
authentication automatically.

To summarise, our contribution is the following. We propose
the use of a smartphone to authenticate users on the web in
such a way that that it supports a gradual yet seamless transi-
tion towards an authentication scheme that is more secure than
passwords. To this end we introduce in Section 6 a protocol that,
using a proxy, a bookmarklet, and a password management app
on a smartphone, allows users to sign in at arbitrary websites,
without the need to remember and retype account names and
passwords. The same app (and associated stored account data)
can be used anywhere, at any PC and browser that allow such a
bookmarklet to be saved. In addition we propose in Section 4 an
authentication protocol based on public key cryptography, that
is integrated within the same smartphone app, for a secure form
of authentication at websites. The protocol is based on the mod-
ified Needham-Schroeder protocol [8, 6, 5] and uses QR codes
to link the browsing session with the smartphone app. We anal-
yse the security of this protocol in Section 5. Because the same
app supports both forms of authentication, websites can inde-
pendently decide to migrate towards supporting this stronger
form of authentication.

Finally, a prototype of our system has been developed and
will be made available as open source at the UbiKiMa website
(http://ubikima.com).

2. RELATED WORK
Similar to our approach in Section 6, Bursztein et al. [2] also

propose the use of bookmarklets to automate signing-in process
using a user’s smartphone. However, they rely on the possibil-
ity to transfer browser session state from one session to another.
This is an undocumented feature at best, if not a downright bug
in the server side implementation of the authenticated session.
It does allow them, however, to always keep the account infor-
mation local to the user smartphone. We, on the other hand, do
not rely on such awkward assumptions, and thus are the first to
propose a truly universal mechanism that supports secure login
to every website from any terminal using an off the shelf phone.

Grosse and Upadhyay [4] describe an approach where the
user’s credentials (based on public key cryptography) are stored
on a separate, external device. They use a USB token with ca-

pacitive touch-sensitive area for user confirmation (for which no
additional device drivers need to be installed). The Relying Party
(RP) sends a hash of the website’s URL, which is forwarded to
the USB token. Similar to what we propose, the token generates
a new self-signed public-private key pair for each new RP during
registration to prevent tracking of users over different RPs. This
solution requires the user to buy special additional hardware,
whereas our solution only requires hardware that many users
already own.

Several QR-based schemes have been proposed before [3,
12]. TIQR [13] is an open source mobile authentication solution
that shares two important properties with our approach. First, it
also uses the phone as the carrier for the user’s credentials and
second, they also use a QR codes. As such, the flow of actions
by the user is similar. A key difference however is that TIQR au-
thentication protocol is based on pre-shared secrets whereas we
use public-key cryptography. In addition, because our approach
features mutual authentication, it is less susceptible to phishing
attacks.

There are a number of authentication schemes that do use
public-key cryptography, but typically these do not support the
use of a separate device (i.e., a smartphone) as the holder for the
key material. The WebID [10] protocol for authentication for
example is based on user certificates that reside in the browser.
The certificates can be self-signed, but the public key is (also)
stored at a so-called Web-ID Provider, which hosts a profile page
for the user. A WebID certificate contains the URI that directs the
RP to the user’s profile on the WebID Provider, for validation of
the certificate. Since the RP visits the user profile on the WebID
Provider directly, the WebID Provider knows exactly which user
visits which RP at which time, posing a privacy problem.

A similar approach is called Mozilla Persona [7], which im-
plements Mozilla’s BrowserID protocol. In this case the user
generates a public-private key pair and has one of her iden-
tity providers (IdPs, in the case of Persona one or more email
providers) sign the public key. A Persona certificate contains
(among other) the user’s email address and the IdP’s domain
name, for validation of the certificate. Similarly to WebID, the
RP visits the IdP directly. But in this case the IdP’s public key
can also be cached at the RP, in which case look-ups are not nec-
essary, improving user privacy. Other issues are 1) a possible
weakness to man-in-the-middle attacks since the RP does not
generate a challenge, 2) that the IdP controls the identity and
can create valid assertions for it at any time, and 3) that anyone
who controls the browser can let the browser sign assertions and
subsequently log in at the user’s account at the RP. Persona tries
to resolve this by letting the user click on a login button at the
RP and select her email address, but these steps can be scripted
and therefore do not authenticate the user, only the browser.

3. PRELIMINARIES
Before moving on to explain our authentication solution we

present a system model that is relevant for both the ideal sit-
uation that uses public key cryptography (Section 4) and our
approach for supporting legacy passwords systems (Section 6).

3.1 System model
We wish to allow a user browsing the web to sign in at a

website using his smartphone as a means of authentication.
We assume the user to browse the web using an arbitrary PC

and an arbitrary browser, not necessarily his own. Nevertheless,
the PC/browser has to be trusted at least partially. No authen-
tication scheme is secure if the end-point itself is corrupted. We

http://ubikima.com

assume that the user is able to add a bookmark, including book-
marks that contain JavaScript code (so-called bookmarklets).

The smartphone belongs to the user and is trusted3. The
smartphone has an Internet connection (WiFi, or cellular data).
Ideally, there also is a means to communicate directly with the
smartphone from the PC using a local channel which, at a min-
imum, allows the PC to send messages to the smartphone. This
channel could be implemented using Bluetooth, Near Field Com-
munication (NFC), or 2-dimensional barcodes such as QR codes
(by using the smartphone camera to read the message embed-
ded in the QR code displayed on the PC display). The latter
option is preferred as it requires no special set-up steps, and can
be supported by all PCs and all camera-equipped smartphones.

Due to firewall restrictions that are often present, we cannot
assume that the PC and smartphone can connect and communi-
cate over the Internet directly. We do assume however that both
can connect to an external server over HTTP. This allows both
devices to register at a proxy, to which they can send messages
to be forwarded to the other party. The model is depicted in
figure 1.

3.2 System Requirements
The system must implement mutual authentication: the user

needs to authenticate at the relying party, and vice versa. More-
over, it must prevent (cf. . [1]): 1) unauthorised access to the
user’s security credentials, 2) abuse of the service provided by
the RP 3) unauthorised access to the user’s account, and 4) un-
wanted collection of private information of the user. Moreover,
while taking the security and privacy requirements into account,
the system should be easy and convenient to use.

3.3 Notation
Throughout the paper we use the following notation. We have

a User U who is accessing a service offered by a Relying Party
R with his browser. The user also owns a smartphone M . The
Relying Party typically consists of a standard web server as well
as a separate component that handles the authentication proto-
col. All these entities may have one or more cryptographic key
pairs. Entity a has public key Ka and private key ka. A message
m encrypted using public key Ka is denoted {m}Ka

.

4. THE IDEAL CASE: AUTHENTICATING

USING PUBLIC KEY CRYPTOGRAPHY
Our protocol is based on the modified Needham-Schroeder

protocol [8, 6, 5]. Relying party R has public key KR and pri-
vate key kR for a suitable public key cryptosystem. For privacy
reasons, users have multiple key pairs for authenticating at dif-
ferent relying parties. This prevents them from being tracked
across services.

The smartphone M of user U keeps a database DBU of tuples
〈KR, URIR, NameR, KU , kU〉 that record, for every relying party R

the user knows about, the following information: the public key
KR, the endpoint URIR at which the relying party is listening
for the authentication protocol, a user-friendly representation
of the relying party’s name NameR, and the public key KU and
private key kU to be used for authenticating at this particular
relying party. The Relying Party R keeps a database DBR of tu-
ples 〈KU , AccountU〉 that record, for every user U , the following
information: the public key KU and its account AccountU . The

3As it stores the user credentials, we have no option but to trust
it. One can store the credentials in the SIM, or a secure SD card,
if so desired.

account essentially is a pointer to where all user data for this
user can be found. These databases are initially empty and filled
by registering users at relying parties using the protocol.

In the following,R andS are sets from which random nonces
and session identifiers are selected, respectively. The domain for
account names and relying party names is not further specified.
These can be considered arbitrary binary strings with proper
length encoding. In general, a web server may be engaged in
several access requests in parallel. Therefore, R stores informa-
tion about ongoing requests in a pool PoolR. Data in this pool is
only kept for a short amount of time (in the order of minutes).
Initially PoolR = ∅.

4.1 Registration/authentication protocol
To register at or authenticate to a certain relying party R, the

following protocol is run between a user U with her smartphone
M and the relying party R. Registration and authentication are
handled in a single protocol because both protocols (when de-
veloped separately) turned out to be remarkably similar, and it
improves the user experience as the user does not have to re-
member whether she registered already at a service.

• U browses to the entry page of R using SSL/TLS< and
clicks on the access button on that page.

• R generates a random session identifier sid ∈r S , and re-
turns sid‖URIR to the browser of U . Also, it internally as-
sociates sid with this particular SSL/TLS session, and it
stores an entry 〈⊥, sid,⊥,⊥〉 for sid in the request pool
PoolR. (If such an entry already exists for sid, a new ses-
sion identifier is generated.)

• U forwards this data to the mobile device M (see 4.2 for
options).

• M connects to R over URIR and retrieves KR‖NameR from
R. M then checks whether it has an entry in its database
DBU for KR, and whether that entry corresponds to the
following tuple: 〈KR, URIR, NameR, KU , kU〉. If the entry ex-
ists, but appears to contain the wrong data, the protocol
aborts. Multiple entries for KR are not permitted. If the
entry exists, it sets type := authenticate else type :=
register, to record the type of the run.

• If type = authenticate, M asks the user U whether she
wishes to access his account at relying party NameR. Oth-
erwise M asks the user U whether she wishes to create a
new account at relying party NameR. If not, the protocol
aborts.

• If type= register then M generates a key pair KU, kU .

• M generates a random rU ∈r R .

• M sends {t1‖type‖sid‖rU‖KU}KR
to R at endpoint URIR.

• R decrypts the message, and verifies tag t1 and verifies
that it has an session open with sid in the request pool
PoolR. If type = register, then R verifies that it does not
have an entry for KU in DBR. If type= authenticate then
this tuple must exist. In all other cases R aborts.

• R generates random rR ∈r R and updates the tuple for
session sid in PoolR to 〈rR, sid, KU , type〉 . (If a tuple with rR

exists, a new rR is generated.) R returns {t2‖rR‖rU‖KR}KU

to M .

• M decrypts the message using kU, verifies tag t2 and ver-
ifies rU and KR. If type = register then M creates entry
〈KR, URIR, NameR, KU , kU〉 in its database DBU .

• M sends rR to R (unencrypted). It notifies the user that
authentication/registration was completed successfully.

• R looks up a matching tuple 〈rR, sid, KU , type〉 in PoolR. If
such an entry does not exists, the protocol fails. If it does
exist, the web server is informed that the session at sid is
associated with public key KU . If type = register, the
web server creates a fresh account AccountU , and adds
〈KU , AccountU〉 to DBR. (It will complain if such an en-
try already exists for KU .) If type = authenticate, it
looks up the tuple 〈KU , AccountU〉 in DBR, and associates
the SSL/TLS session with AccountU . The user is signed in
to this account. (R will complain if such a tuple does not
exist for KU .)

All entities in the protocol wait only a short amount of time
for a message that they expect to arrive in response to an earlier
message they sent. If that message does not arrive in time, an
error message is displayed and the protocol is aborted.

4.2 Bootstrapping communication
In the the initial phase of our authentication protocol a ses-

sion identifier (sid) and a URI are to be transferred from the
Relying Party to the Mobile through the user’s browser to boot-
strap further communication between the Mobile M and the Re-
lying Party. By design, in our scenario the phone and the PC
running the browser are physically close to each other, allowing
us to use a simple QR-code as a proximity channel for this mes-
sage. As stated before, compared to other proximity channels
such as NFC, QR-codes require little setup and given the ubiq-
uity of cameras in smartphones QR-code scanning is generally
available.

Alternatively, the Relying Party could initiate the communi-
cation with the phone directly. This however requires the user
to share with the Relying Party information on how to reach his
phone (either during setup or at each authentication). There are
however number of privacy, security and usability issues with
such an approach, which are further discussed in Section 5.

4.3 Concrete implementation
An important consideration when implementing our authenti-

cation scheme is the choice of the public-key encryption scheme.
For our prototype we opted for Elliptic Curve Cryptography (ECC)
using the 256 bit NIST curve prime256v1. For the encryption
of the messages t1 and t2 we use a combination of asymmetric
and symmetric cryptography in the form of Hashed ElGamal for
the key encapsulation mechanism, AES for the block cipher and
CCM as the authenticated mode of operation. The AES key is
128 bit long and the values sid rR and rU are all 128 bit random
values. The (random) nonce for CCM is 13 bytes long.

5. SECURITY ANALYSIS
In this section we perform a security analysis on the authen-

tication protocol described in the previous section by analysing
the possible attack scenarios.

5.1 Malware on the browser
If the user PC or browser is compromised by malware, the

attacker can take over the entire session after successful authen-
tication to steal information, insert transactions, etc. No authen-
tication protocol protects against such attacks and therefore our
protocol does not have special measures to prevent it either.

However, our protocol does offer protection against a man-
in-the-browser attack that tries to obtain the user’s credentials.
Replay attacks are prevented and the private key never leaves
the smartphone.

5.2 Malware on the phone
The protocol does not protect against malware on the smart-

phone. To reduce the risk of malware on the smartphone, all
the keys could be encrypted based on a user-supplied pin code.
This prevents malware (or a malicious user with a lost or stolen
phone) from reading the private keys directly. Alternatively,
storing the private keys in a secure element (SIM or other hard-
ware) prevents an attacker from transferring credentials. How-
ever, without the possibility for secure pin code entry, a secure
element does not prevent an attacker from using the credentials
once they are unlocked, or trying to intercept the user’s pin code.

Also note that if a piece of malware on the smartphone can
read or manipulate the sid value sent from the browser, this may
lead to problems. See section 5.5.

5.3 Malicious or compromised RP
A malicious RP (or an attacker with information stolen from

a compromised RP) could attempt to stage a phishing attack to
lure a user to authenticate at another legitimate RP for him.
This will fail because (a) our Needham-Schroeder based pro-
tocol features mutual authentication, (b) the smartphone will
check for the right combination of 〈KR, URIR, NameR〉, and (c) a
separate user key pair is used for each RP. An additional advan-
tage of authentication based on public key cryptography is that
the credentials stored at at the (malicious or compromised) RP
are public keys, which are typically harder to brute-force than
hashes of passwords.

User privacy is protected by having a unique key pair for each
RP, which prevents multiple RPs from colluding to link users
among themselves. Furthermore, By using a proximity chan-
nel to bootstrap communication between the smartphone and
the RP so there is no need to store information at the RP on how
to contact the smartphone.

5.4 Browser-RP connection
We assume that the channel between the RP and the browser

is secured using SSL/TLS while the protocol runs. This ensures
that a MitM between RP and the browser cannot read, modify or
inject messages, and therefore the protocol is protected against
this kind of attack.

5.5 Browser-phone connection
The information sent over the proximity channel is better pro-

tected against unauthorised reading and manipulation than in
case of an IP-connection between browser and the smartphone.
Therefore we do not use additional measures such as signatures
and encryption to protect this information. However, sending
the session identifier sid unprotected incurs certain risks.

Suppose an attacker manages to intercept sid during regis-
tration. With the intercepted sid he can send an alternative t1

message in which he registers his own public key. The attacker
will be able to send the right value for rR back to the RP, the
session will appear to be authenticated and a new account will
be associated with it. However, the smartphone will not receive
a valid t2 message, and will raise a warning message about a
possible session hijacking attempt. Next, users should close the
browser session. For this reason, a future account migration pro-
tocol should require the user to first register his public key with
the RP, and then to authenticate the in old way (using username
and password). Doing it the other way around would allow the
attacker to hijack the account using the method outlined above.

Also, if an attacker controls the browser or the channel from
browser to the smartphone, he can swap the user’s sid with the

sid from an authentication session he started himself, tricking
the user into signing the attacker in at the RP. This could be mit-
igated by printing the sid in the browser window and on the GUI
of the mobile app (provided the browser itself is not compro-
mised). However, any authentication protocol will suffer from
a similar attack: you simply cannot protect yourself from an at-
tacker that sits within your PC or browser.

Finally, using a QR-code to initiate the authentication process
has an additional advantage in that it requires deliberate user
action.

5.6 Phone-RP connection
The communication between the smartphone and the RP does

not require a secure channel such as TLS/SSL because the im-
portant messages (t1 and t2) are encrypted directly. The re-
sponse to the hello message contains public knowledge (KR and
NameR), manipulation of which will be detected by the smart-
phone. The final message containing the random value rR is not
reusable by an attacker. Blocking or manipulating it will only
result in a DoS attack against the user.

Using a QR-code to send sid via the browser to the smartphone
instead of directly from the RP prevents the risk of an attacker
intercepting sid on the Phone-RP link (see section 5.5). Alter-
natively, not sending any information at all between the smart-
phone and the RP could be achieved by sending all messages via
the browser/PC.

6. PASSWORD-BASED AUTHENTICATION
The most common way of authenticating on the web is still

a username/password combination. We provide a migration so-
lution towards our authentication protocol (see Section 4) in
which the smartphone is used as a portable password manager.
The username/password combinations are only stored on the
phone, and thus the Relying Party does not have to modify its
login procedure.

On a high level (and from a user’s perspective) an authentica-
tion now has the following steps:

• The user visits a website where she needs to authenticate
with a username and a password.

• In the browser, the user clicks on a ‘Authenticate’-button
provided by an authentication helper (see Section 6.2).

• The user receives a notification on her smartphone that an
authentication request has been received.

• On her smartphone, the user verifies that the request is for
the correct website and taps “OK”.

• Within moments her username and password are filled in
on the website and submitted.

• The user is logged in.

6.1 Technical perspective
Below we discuss how such a solution can be implemented.

As illustrated in Figure 1, there are four actors in this use case:
(the user at) the browser, (the same user at) the smartphone,
the Relying Party, and the proxy. This proxy is needed to be able
to contact the smartphone from the browser. However, we will
make sure the proxy will not be able to determine for which RP
the credentials are requested, nor will it be able to obtain the
credentials themselves.

6.1.1 Setup

The setup consists of three steps. First, the user generates a
public/private key pair (Ku, ku) in the app on the smartphone.

Next, the user creates an account at the proxy by asking the
app to submit to the proxy server: (a) the public key (Ku) and
(b) information on how to contact the phone (the details dif-
fer for each smartphone platform). The proxy server responds
with a message containing a new account-id for the user. This
account-id is used a later stage by the authentication helper in
the browser for the actual authentication steps and needs to be
transferred somehow to the browser (see Section 6.2). The pass-
word database in the app on the smartphone is (incrementally)
filled by the user.

6.1.2 Authentication

Once the setup is completed, the authentication helper in the
browser can be used to authenticate to websites. Figure 2 illus-
trates the steps involved. First, the user goes to a website that
uses password-based authentication and clicks on the ‘Authenti-
cate’ button provided by the authentication helper.

The authentication helper proceeds as follows. First a ran-
dom session key ks is generated. This session key is then en-
crypted to the public key of the user: {ks}Ku

. The authentica-
tion helper looks up the URI of the currently visited page and
creates an authentication request for that URI. This request is
encrypted using the session key with a symmetric encryption
scheme: {request}ks

. The encrypted session key ({ks}Ku
) and

the encrypted request ({request}ks
) are both sent to the proxy to

be forwarded to the phone.
The proxy has the information to contact the phone and sim-

ply forwards the messages to the phone. Because the request is
encrypted with the session key, the proxy learns nothing. In con-
trast, the app on the phone has the private key, with which it can
decrypt the session key and subsequently decrypt the authenti-
cation request. The smartphone matches the URI in the request
to a collection of URIs and username/password combinations.
If there is a match, phone issues a notification and the user is
asked whether she really would like to authenticate to the re-
quested URI. If there is no match, the user is given the option to
fill in the username and password. After the user has indicated
the authentication should proceed, the app creates an authenti-
cation response that contains the username and password. This
response is encrypted with the same session key ({response}ks

)
and simply sent back to the proxy. The proxy knows how to
get back to the authentication helper in the browser that sent
the original request and passes the authentication response on.
Because the authentication helper originally created the session
key it can decrypt the response, retrieve the username and pass-
word, and using some heuristic fill the username and password
fields in the page. Optionally, the login-form can also be auto-
matically submitted.

6.2 Authentication helper
As discussed in the previous section, the authentication helper

in the browser acts as the link between the smartphone (having
the credentials) and the web page (requesting the credentials).
It can be implemented by (a) a browser extension or (b) a book-
marklet. Both options have their advantages and disadvantages.
A browser extension is a way to add new features to a browser
that can potentially use additional (native) libraries. However, a
browser extension does require the user to actively install such
an extension in the browser, for which she might not have per-
missions. A bookmarklet does not have this restriction as it is a
special URL containing Javascript code that is to be added to the
bookmark-bar of the browser (hence the name). This Javascript
code will be executed when the bookmark is clicked upon. Be-

Figure 2: Schematic depiction of the steps involved in using

a smartphone as a password manager for browser sessions

on a PC.

cause the installation of a bookmarklet does not need special
permissions and a bookmarklet allows for easier prototyping, we
chose to create a Javascript bookmarklet implementation of the
authentication helper for our proof-of-concept. This has some
security implications, which is discussed in the next section.

6.3 Proof-of-concept implementation
Our proof-of-concept of the authentication helper is imple-

mented as a bookmarklet. When clicked upon, the Javascript
code in the bookmarklet loads additional Javascript libraries to
support the next steps of the authentication. The Javascript li-
brary used for cryptography is the “Stanford Javascript Crypto
Library”4, and in particular the ECC branch. We note that cryp-
tography in Javascript is usually frowned upon[11] for a num-
ber of reasons, including the malleability of the Javascript run-
time and the lack of good entropy sources. This means that any
host providing Javascript code running on the website can con-
trol the cryptographic operations. However, in this case one can
argue it is not more or less secure than filling in the password
“by hand”, because in that case any malicious Javascript code
can also obtain the credentials.

We use the 256 bit NIST ECC curve prime256v1, and Hashed
ElGamal is used to generate and encrypt the session key ks. This
session key is 128 bits long and used together with AES in CCM
mode (104 bit nonce) to encrypt the messages.

7. CONCLUSIONS
In this paper we have presented a new authentication proto-

col based on secure public key cryptography for usage on the
web as an alternative to the traditional username/password ap-
proach. We leverage the ubiquity of smartphones and propose
to use a smartphone app as a (semi-trusted) container for these
secure credentials. The same app also supports traditional user-
name/password authentication that can be used on existing web-
sites that do not yet offer the stronger, public key based, ap-
proach. This provides a seamless experience for both users and
service providers, as each can decide independently of the other
when to start the transition to the new, more secure, form of
authentication.

4http://crypto.stanford.edu/sjcl/

We have a developed a working prototype of the smartphone
app, as well as the supporting infrastructure (integration mod-
ules for the service provider, a proxy and an authentication helper
to be integrated in the browser).

There are several steps to be taken given our current results.
First and foremost, the working prototype needs to be stream-
lined and tested. Then, actual deployment needs to be encour-
aged. This step will focus on getting as many users as possible
to adopt the smartphone app as a convenient and ubiquitously
usable password manager. Parallel to that, integration support
for service providers in terms of API’s and proper documentation
will be developed. Finally, key management (that allow users as
well as relying parties to update their keys in case of a com-
promise) protocols need to be developed, and secure backup
strategies for key material need to be integrated (especially for
the user side).

8. REFERENCES
[1] Gergely Alpár, Jaap-Henk Hoepman, and Johanneke

Siljee. The identity crisis. Security, privacy and usability
issues in identity management. CoRR, abs/1101.0427,
2011.

[2] Elie Bursztein, Chinmay Soman, Dan Boneh, and John C.
Mitchell. Sessionjuggler: secure web login from an
untrusted terminal using session hijacking. In WWW,
pages 321–330. ACM, 2012.

[3] Ben Dodson, Debangsu Sengupta, Dan Boneh, and
Monica S. Lam. Secure, consumer-friendly web
authentication and payments with a phone. In MobiCASE,
pages 17–38. Springer, 2010.

[4] Eric Grosse and Mayank Upadhyay. Authentication at
scale. IEEE Security & Privacy, 11(1):15–22, 2013.

[5] Gavin Lowe. An attack on the Needham-Schroeder
public-key authentication protocol. Inf. Process. Lett.,
56(3):131–133, 1995.

[6] Alfred Menezes, Paul C. van Oorschot, and Scott A.
Vanstone. Handbook of Applied Cryptography. CRC Press,
1996.

[7] Mozilla. Mozilla persona.
https://www.mozilla.org/en-US/persona/.

[8] Roger M. Needham and Michael D. Schroeder. Using
encryption for authentication in large networks of
computers. Commun. ACM, 21(12):993–999, 1978.

[9] Peter G. Neumann. Risks of passwords. Commun. ACM,
37(4):126, 1994.

[10] J. Sayre and H. Story. The WebID protocol and browsers.
http://www.w3.org/2011/identity-
ws/papers/idbrowser2011_submission_22/webid.html,
May 2011.

[11] Matasano Security. Javascript cryptography considered
harmful. http://www.matasano.com/articles/javascript-
cryptography/.

[12] Guenther Starnberger, Lorenz Froihofer, and Karl M.
Göschka. Qr-tan: Secure mobile transaction
authentication. In ARES, pages 578–583. IEEE Computer
Society, 2009.

[13] Roland M Van Rijswijk and Joost Van Dijk. TIQR: a novel
take on two–factor authentication. In Proceedings of the

25th international conference on Large Installation System

Administration, pages 7–7. USENIX Association, 2011.

http://crypto.stanford.edu/sjcl/

	Introduction
	Related Work
	Preliminaries
	System model
	System Requirements
	Notation

	The ideal case: authenticating using public key cryptography
	Registration/authentication protocol
	Bootstrapping communication
	Concrete implementation

	Security analysis
	Malware on the browser
	Malware on the phone
	Malicious or compromised RP
	Browser-RP connection
	Browser-phone connection
	Phone-RP connection

	Password-based authentication
	Technical perspective
	Setup
	Authentication

	Authentication helper
	Proof-of-concept implementation

	Conclusions
	References

